MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4b Structured version   Visualization version   GIF version

Theorem yonedalem4b 18182
Description: Lemma for yoneda 18189. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
yonedalem4b.p (𝜑𝑃𝐵)
yonedalem4b.g (𝜑𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
Assertion
Ref Expression
yonedalem4b (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝐺,𝑔,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝑃,𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑃(𝑢)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐺(𝑢)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4b
StepHypRef Expression
1 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
2 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3 yoneda.1 . . . . 5 1 = (Id‘𝐶)
4 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
6 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
13 yoneda.w . . . . 5 (𝜑𝑉𝑊)
14 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
15 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
16 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
19 yonedalem4.p . . . . 5 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 18181 . . . 4 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
2120fveq1d 6824 . . 3 (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑃) = ((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃))
2221fveq1d 6824 . 2 (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺))
23 eqidd 2732 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
24 yonedalem4b.p . . . 4 (𝜑𝑃𝐵)
25 ovex 7379 . . . . . 6 (𝑦(Hom ‘𝐶)𝑋) ∈ V
2625mptex 7157 . . . . 5 (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V
2726a1i 11 . . . 4 ((𝜑𝑦 = 𝑃) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V)
28 yonedalem4b.g . . . . . . 7 (𝜑𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
2928adantr 480 . . . . . 6 ((𝜑𝑦 = 𝑃) → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
30 simpr 484 . . . . . . 7 ((𝜑𝑦 = 𝑃) → 𝑦 = 𝑃)
3130oveq1d 7361 . . . . . 6 ((𝜑𝑦 = 𝑃) → (𝑦(Hom ‘𝐶)𝑋) = (𝑃(Hom ‘𝐶)𝑋))
3229, 31eleqtrrd 2834 . . . . 5 ((𝜑𝑦 = 𝑃) → 𝐺 ∈ (𝑦(Hom ‘𝐶)𝑋))
33 fvexd 6837 . . . . 5 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) ∈ V)
34 simplr 768 . . . . . . . 8 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑃)
3534oveq2d 7362 . . . . . . 7 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (𝑋(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑃))
36 simpr 484 . . . . . . 7 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
3735, 36fveq12d 6829 . . . . . 6 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → ((𝑋(2nd𝐹)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑃)‘𝐺))
3837fveq1d 6824 . . . . 5 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
3932, 33, 38fvmptdv2 6947 . . . 4 ((𝜑𝑦 = 𝑃) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)))
40 nfmpt1 5188 . . . 4 𝑦(𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
41 nffvmpt1 6833 . . . . . 6 𝑦((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)
42 nfcv 2894 . . . . . 6 𝑦𝐺
4341, 42nffv 6832 . . . . 5 𝑦(((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺)
4443nfeq1 2910 . . . 4 𝑦(((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)
4524, 27, 39, 40, 44fvmptd2f 6945 . . 3 (𝜑 → ((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)))
4623, 45mpd 15 . 2 (𝜑 → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
4722, 46eqtrd 2766 1 (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897  cop 4579  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  tpos ctpos 8155  Basecbs 17120  Hom chom 17172  Catccat 17570  Idccid 17571  Homf chomf 17572  oppCatcoppc 17617   Func cfunc 17761  func ccofu 17763   FuncCat cfuc 17852  SetCatcsetc 17982   ×c cxpc 18074   1stF c1stf 18075   2ndF c2ndf 18076   ⟨,⟩F cprf 18077   evalF cevlf 18115  HomFchof 18154  Yoncyon 18155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  yonedalem4c  18183  yonedainv  18187
  Copyright terms: Public domain W3C validator