Proof of Theorem yonedalem4b
Step | Hyp | Ref
| Expression |
1 | | yoneda.y |
. . . . 5
⊢ 𝑌 = (Yon‘𝐶) |
2 | | yoneda.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
3 | | yoneda.1 |
. . . . 5
⊢ 1 =
(Id‘𝐶) |
4 | | yoneda.o |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
5 | | yoneda.s |
. . . . 5
⊢ 𝑆 = (SetCat‘𝑈) |
6 | | yoneda.t |
. . . . 5
⊢ 𝑇 = (SetCat‘𝑉) |
7 | | yoneda.q |
. . . . 5
⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
8 | | yoneda.h |
. . . . 5
⊢ 𝐻 =
(HomF‘𝑄) |
9 | | yoneda.r |
. . . . 5
⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
10 | | yoneda.e |
. . . . 5
⊢ 𝐸 = (𝑂 evalF 𝑆) |
11 | | yoneda.z |
. . . . 5
⊢ 𝑍 = (𝐻 ∘func
((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉
∘func (𝑄 2ndF 𝑂))
〈,〉F (𝑄 1stF 𝑂))) |
12 | | yoneda.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
13 | | yoneda.w |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
14 | | yoneda.u |
. . . . 5
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
15 | | yoneda.v |
. . . . 5
⊢ (𝜑 → (ran
(Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
16 | | yonedalem21.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑂 Func 𝑆)) |
17 | | yonedalem21.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
18 | | yonedalem4.n |
. . . . 5
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) |
19 | | yonedalem4.p |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ((1st ‘𝐹)‘𝑋)) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 | yonedalem4a 17974 |
. . . 4
⊢ (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |
21 | 20 | fveq1d 6770 |
. . 3
⊢ (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑃) = ((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)) |
22 | 21 | fveq1d 6770 |
. 2
⊢ (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺)) |
23 | | eqidd 2740 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))) |
24 | | yonedalem4b.p |
. . . 4
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
25 | | ovex 7301 |
. . . . . 6
⊢ (𝑦(Hom ‘𝐶)𝑋) ∈ V |
26 | 25 | mptex 7093 |
. . . . 5
⊢ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V |
27 | 26 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V) |
28 | | yonedalem4b.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋)) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋)) |
30 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → 𝑦 = 𝑃) |
31 | 30 | oveq1d 7283 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → (𝑦(Hom ‘𝐶)𝑋) = (𝑃(Hom ‘𝐶)𝑋)) |
32 | 29, 31 | eleqtrrd 2843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → 𝐺 ∈ (𝑦(Hom ‘𝐶)𝑋)) |
33 | | fvexd 6783 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴) ∈ V) |
34 | | simplr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑃) |
35 | 34 | oveq2d 7284 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (𝑋(2nd ‘𝐹)𝑦) = (𝑋(2nd ‘𝐹)𝑃)) |
36 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺) |
37 | 35, 36 | fveq12d 6775 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → ((𝑋(2nd ‘𝐹)𝑦)‘𝑔) = ((𝑋(2nd ‘𝐹)𝑃)‘𝐺)) |
38 | 37 | fveq1d 6770 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) |
39 | 32, 33, 38 | fvmptdv2 6887 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = 𝑃) → (((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)) → (((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴))) |
40 | | nfmpt1 5186 |
. . . 4
⊢
Ⅎ𝑦(𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) |
41 | | nffvmpt1 6779 |
. . . . . 6
⊢
Ⅎ𝑦((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃) |
42 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑦𝐺 |
43 | 41, 42 | nffv 6778 |
. . . . 5
⊢
Ⅎ𝑦(((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) |
44 | 43 | nfeq1 2923 |
. . . 4
⊢
Ⅎ𝑦(((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴) |
45 | 24, 27, 39, 40, 44 | fvmptd2f 6885 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴))) → (((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴))) |
46 | 23, 45 | mpd 15 |
. 2
⊢ (𝜑 → (((𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd ‘𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) |
47 | 22, 46 | eqtrd 2779 |
1
⊢ (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd ‘𝐹)𝑃)‘𝐺)‘𝐴)) |