MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4b Structured version   Visualization version   GIF version

Theorem yonedalem4b 17982
Description: Lemma for yoneda 17989. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
yonedalem4b.p (𝜑𝑃𝐵)
yonedalem4b.g (𝜑𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
Assertion
Ref Expression
yonedalem4b (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝐺,𝑔,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝑃,𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑃(𝑢)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐺(𝑢)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4b
StepHypRef Expression
1 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
2 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3 yoneda.1 . . . . 5 1 = (Id‘𝐶)
4 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
6 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
13 yoneda.w . . . . 5 (𝜑𝑉𝑊)
14 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
15 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
16 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
19 yonedalem4.p . . . . 5 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 17981 . . . 4 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
2120fveq1d 6769 . . 3 (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑃) = ((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃))
2221fveq1d 6769 . 2 (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺))
23 eqidd 2739 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
24 yonedalem4b.p . . . 4 (𝜑𝑃𝐵)
25 ovex 7301 . . . . . 6 (𝑦(Hom ‘𝐶)𝑋) ∈ V
2625mptex 7092 . . . . 5 (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V
2726a1i 11 . . . 4 ((𝜑𝑦 = 𝑃) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) ∈ V)
28 yonedalem4b.g . . . . . . 7 (𝜑𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
2928adantr 481 . . . . . 6 ((𝜑𝑦 = 𝑃) → 𝐺 ∈ (𝑃(Hom ‘𝐶)𝑋))
30 simpr 485 . . . . . . 7 ((𝜑𝑦 = 𝑃) → 𝑦 = 𝑃)
3130oveq1d 7283 . . . . . 6 ((𝜑𝑦 = 𝑃) → (𝑦(Hom ‘𝐶)𝑋) = (𝑃(Hom ‘𝐶)𝑋))
3229, 31eleqtrrd 2842 . . . . 5 ((𝜑𝑦 = 𝑃) → 𝐺 ∈ (𝑦(Hom ‘𝐶)𝑋))
33 fvexd 6782 . . . . 5 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) ∈ V)
34 simplr 766 . . . . . . . 8 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑦 = 𝑃)
3534oveq2d 7284 . . . . . . 7 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (𝑋(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑃))
36 simpr 485 . . . . . . 7 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → 𝑔 = 𝐺)
3735, 36fveq12d 6774 . . . . . 6 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → ((𝑋(2nd𝐹)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑃)‘𝐺))
3837fveq1d 6769 . . . . 5 (((𝜑𝑦 = 𝑃) ∧ 𝑔 = 𝐺) → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
3932, 33, 38fvmptdv2 6886 . . . 4 ((𝜑𝑦 = 𝑃) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)))
40 nfmpt1 5182 . . . 4 𝑦(𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))
41 nffvmpt1 6778 . . . . . 6 𝑦((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)
42 nfcv 2907 . . . . . 6 𝑦𝐺
4341, 42nffv 6777 . . . . 5 𝑦(((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺)
4443nfeq1 2922 . . . 4 𝑦(((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)
4524, 27, 39, 40, 44fvmptd2f 6884 . . 3 (𝜑 → ((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴)))
4623, 45mpd 15 . 2 (𝜑 → (((𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)))‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
4722, 46eqtrd 2778 1 (𝜑 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑃)‘𝐺) = (((𝑋(2nd𝐹)𝑃)‘𝐺)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3430  cun 3885  wss 3887  cop 4568  cmpt 5157  ran crn 5586  cfv 6427  (class class class)co 7268  cmpo 7270  1st c1st 7819  2nd c2nd 7820  tpos ctpos 8029  Basecbs 16900  Hom chom 16961  Catccat 17361  Idccid 17362  Homf chomf 17363  oppCatcoppc 17408   Func cfunc 17557  func ccofu 17559   FuncCat cfuc 17646  SetCatcsetc 17778   ×c cxpc 17873   1stF c1stf 17874   2ndF c2ndf 17875   ⟨,⟩F cprf 17876   evalF cevlf 17915  HomFchof 17954  Yoncyon 17955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pr 5351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273
This theorem is referenced by:  yonedalem4c  17983  yonedainv  17987
  Copyright terms: Public domain W3C validator