| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > graop | Structured version Visualization version GIF version | ||
| Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
| Ref | Expression |
|---|---|
| graop.h | ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 |
| Ref | Expression |
|---|---|
| graop | ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | graop.h | . . . 4 ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 | |
| 2 | 1 | fveq2i 6820 | . . 3 ⊢ (Vtx‘𝐻) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 3 | fvex 6830 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
| 4 | fvex 6830 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 3, 4 | opvtxfvi 28982 | . . 3 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
| 6 | 2, 5 | eqtr2i 2755 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐻) |
| 7 | 1 | fveq2i 6820 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 8 | 3, 4 | opiedgfvi 28983 | . . 3 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
| 9 | 7, 8 | eqtr2i 2755 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐻) |
| 10 | 6, 9 | pm3.2i 470 | 1 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 〈cop 4577 ‘cfv 6476 Vtxcvtx 28969 iEdgciedg 28970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-iota 6432 df-fun 6478 df-fv 6484 df-1st 7916 df-2nd 7917 df-vtx 28971 df-iedg 28972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |