Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > graop | Structured version Visualization version GIF version |
Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
Ref | Expression |
---|---|
graop.h | ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 |
Ref | Expression |
---|---|
graop | ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | graop.h | . . . 4 ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 | |
2 | 1 | fveq2i 6759 | . . 3 ⊢ (Vtx‘𝐻) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
3 | fvex 6769 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
4 | fvex 6769 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 3, 4 | opvtxfvi 27282 | . . 3 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
6 | 2, 5 | eqtr2i 2767 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐻) |
7 | 1 | fveq2i 6759 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
8 | 3, 4 | opiedgfvi 27283 | . . 3 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
9 | 7, 8 | eqtr2i 2767 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐻) |
10 | 6, 9 | pm3.2i 470 | 1 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 〈cop 4564 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-1st 7804 df-2nd 7805 df-vtx 27271 df-iedg 27272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |