| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > graop | Structured version Visualization version GIF version | ||
| Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
| Ref | Expression |
|---|---|
| graop.h | ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 |
| Ref | Expression |
|---|---|
| graop | ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | graop.h | . . . 4 ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 | |
| 2 | 1 | fveq2i 6861 | . . 3 ⊢ (Vtx‘𝐻) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 3 | fvex 6871 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
| 4 | fvex 6871 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 3, 4 | opvtxfvi 28936 | . . 3 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
| 6 | 2, 5 | eqtr2i 2753 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐻) |
| 7 | 1 | fveq2i 6861 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 8 | 3, 4 | opiedgfvi 28937 | . . 3 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
| 9 | 7, 8 | eqtr2i 2753 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐻) |
| 10 | 6, 9 | pm3.2i 470 | 1 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 〈cop 4595 ‘cfv 6511 Vtxcvtx 28923 iEdgciedg 28924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-1st 7968 df-2nd 7969 df-vtx 28925 df-iedg 28926 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |