MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  graop Structured version   Visualization version   GIF version

Theorem graop 29028
Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.)
Hypothesis
Ref Expression
graop.h 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
Assertion
Ref Expression
graop ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))

Proof of Theorem graop
StepHypRef Expression
1 graop.h . . . 4 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
21fveq2i 6834 . . 3 (Vtx‘𝐻) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
3 fvex 6844 . . . 4 (Vtx‘𝐺) ∈ V
4 fvex 6844 . . . 4 (iEdg‘𝐺) ∈ V
53, 4opvtxfvi 29008 . . 3 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
62, 5eqtr2i 2757 . 2 (Vtx‘𝐺) = (Vtx‘𝐻)
71fveq2i 6834 . . 3 (iEdg‘𝐻) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
83, 4opiedgfvi 29009 . . 3 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
97, 8eqtr2i 2757 . 2 (iEdg‘𝐺) = (iEdg‘𝐻)
106, 9pm3.2i 470 1 ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  cop 4583  cfv 6489  Vtxcvtx 28995  iEdgciedg 28996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-1st 7930  df-2nd 7931  df-vtx 28997  df-iedg 28998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator