| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > graop | Structured version Visualization version GIF version | ||
| Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
| Ref | Expression |
|---|---|
| graop.h | ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 |
| Ref | Expression |
|---|---|
| graop | ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | graop.h | . . . 4 ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 | |
| 2 | 1 | fveq2i 6908 | . . 3 ⊢ (Vtx‘𝐻) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 3 | fvex 6918 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
| 4 | fvex 6918 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
| 5 | 3, 4 | opvtxfvi 29027 | . . 3 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
| 6 | 2, 5 | eqtr2i 2765 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐻) |
| 7 | 1 | fveq2i 6908 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 8 | 3, 4 | opiedgfvi 29028 | . . 3 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
| 9 | 7, 8 | eqtr2i 2765 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐻) |
| 10 | 6, 9 | pm3.2i 470 | 1 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 〈cop 4631 ‘cfv 6560 Vtxcvtx 29014 iEdgciedg 29015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fv 6568 df-1st 8015 df-2nd 8016 df-vtx 29016 df-iedg 29017 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |