Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > graop | Structured version Visualization version GIF version |
Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {〈(Base‘ndx), 𝑉〉, 〈(.ef‘ndx), 𝐸〉}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.) |
Ref | Expression |
---|---|
graop.h | ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 |
Ref | Expression |
---|---|
graop | ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | graop.h | . . . 4 ⊢ 𝐻 = 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 | |
2 | 1 | fveq2i 6777 | . . 3 ⊢ (Vtx‘𝐻) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
3 | fvex 6787 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
4 | fvex 6787 | . . . 4 ⊢ (iEdg‘𝐺) ∈ V | |
5 | 3, 4 | opvtxfvi 27379 | . . 3 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
6 | 2, 5 | eqtr2i 2767 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐻) |
7 | 1 | fveq2i 6777 | . . 3 ⊢ (iEdg‘𝐻) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
8 | 3, 4 | opiedgfvi 27380 | . . 3 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
9 | 7, 8 | eqtr2i 2767 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐻) |
10 | 6, 9 | pm3.2i 471 | 1 ⊢ ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 〈cop 4567 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-2nd 7832 df-vtx 27368 df-iedg 27369 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |