MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  graop Structured version   Visualization version   GIF version

Theorem graop 29013
Description: Any representation of a graph 𝐺 (especially as extensible structure 𝐺 = {⟨(Base‘ndx), 𝑉⟩, ⟨(.ef‘ndx), 𝐸⟩}) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020.)
Hypothesis
Ref Expression
graop.h 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
Assertion
Ref Expression
graop ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))

Proof of Theorem graop
StepHypRef Expression
1 graop.h . . . 4 𝐻 = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
21fveq2i 6884 . . 3 (Vtx‘𝐻) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
3 fvex 6894 . . . 4 (Vtx‘𝐺) ∈ V
4 fvex 6894 . . . 4 (iEdg‘𝐺) ∈ V
53, 4opvtxfvi 28993 . . 3 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
62, 5eqtr2i 2760 . 2 (Vtx‘𝐺) = (Vtx‘𝐻)
71fveq2i 6884 . . 3 (iEdg‘𝐻) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
83, 4opiedgfvi 28994 . . 3 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
97, 8eqtr2i 2760 . 2 (iEdg‘𝐺) = (iEdg‘𝐻)
106, 9pm3.2i 470 1 ((Vtx‘𝐺) = (Vtx‘𝐻) ∧ (iEdg‘𝐺) = (iEdg‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  cop 4612  cfv 6536  Vtxcvtx 28980  iEdgciedg 28981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994  df-vtx 28982  df-iedg 28983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator