MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 28777
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐞 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐞 ∈ V
3 opvtxfv 28772 . 2 ((𝑉 ∈ V ∧ 𝐞 ∈ V) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)
41, 2, 3mp2an 689 1 (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533   ∈ wcel 2098  Vcvv 3468  âŸšcop 4629  â€˜cfv 6537  Vtxcvtx 28764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fv 6545  df-1st 7974  df-vtx 28766
This theorem is referenced by:  graop  28797  vtxvalsnop  28809  uhgrspanop  29061  fusgrfis  29095  cusgrsize  29220  fusgrmaxsize  29230  vtxdgop  29236  vtxdginducedm1  29309  vtxdginducedm1fi  29310  finsumvtxdg2ssteplem4  29314  finsumvtxdg2size  29316  eupth2lem3  29998  konigsberglem1  30014  konigsberglem2  30015  konigsberglem3  30016
  Copyright terms: Public domain W3C validator