| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opvtxfvi | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
| Ref | Expression |
|---|---|
| opvtxfvi.v | ⊢ 𝑉 ∈ V |
| opvtxfvi.e | ⊢ 𝐸 ∈ V |
| Ref | Expression |
|---|---|
| opvtxfvi | ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
| 2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
| 3 | opvtxfv 28984 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cop 4591 ‘cfv 6499 Vtxcvtx 28976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-vtx 28978 |
| This theorem is referenced by: graop 29009 vtxvalsnop 29021 uhgrspanop 29276 fusgrfis 29310 cusgrsize 29435 fusgrmaxsize 29445 vtxdgop 29451 vtxdginducedm1 29524 vtxdginducedm1fi 29525 finsumvtxdg2ssteplem4 29529 finsumvtxdg2size 29531 eupth2lem3 30215 konigsberglem1 30231 konigsberglem2 30232 konigsberglem3 30233 |
| Copyright terms: Public domain | W3C validator |