MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 27282
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opvtxfv 27277 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
41, 2, 3mp2an 688 1 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  Vtxcvtx 27269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804  df-vtx 27271
This theorem is referenced by:  graop  27302  vtxvalsnop  27314  uhgrspanop  27566  fusgrfis  27600  cusgrsize  27724  fusgrmaxsize  27734  vtxdgop  27740  vtxdginducedm1  27813  vtxdginducedm1fi  27814  finsumvtxdg2ssteplem4  27818  finsumvtxdg2size  27820  eupth2lem3  28501  konigsberglem1  28517  konigsberglem2  28518  konigsberglem3  28519
  Copyright terms: Public domain W3C validator