| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opvtxfvi | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
| Ref | Expression |
|---|---|
| opvtxfvi.v | ⊢ 𝑉 ∈ V |
| opvtxfvi.e | ⊢ 𝐸 ∈ V |
| Ref | Expression |
|---|---|
| opvtxfvi | ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
| 2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
| 3 | opvtxfv 28949 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 〈cop 4583 ‘cfv 6482 Vtxcvtx 28941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fv 6490 df-1st 7924 df-vtx 28943 |
| This theorem is referenced by: graop 28974 vtxvalsnop 28986 uhgrspanop 29241 fusgrfis 29275 cusgrsize 29400 fusgrmaxsize 29410 vtxdgop 29416 vtxdginducedm1 29489 vtxdginducedm1fi 29490 finsumvtxdg2ssteplem4 29494 finsumvtxdg2size 29496 eupth2lem3 30180 konigsberglem1 30196 konigsberglem2 30197 konigsberglem3 30198 |
| Copyright terms: Public domain | W3C validator |