MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 28266
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐞 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐞 ∈ V
3 opvtxfv 28261 . 2 ((𝑉 ∈ V ∧ 𝐞 ∈ V) → (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉)
41, 2, 3mp2an 690 1 (Vtx‘⟚𝑉, 𝐞⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ∈ wcel 2106  Vcvv 3474  âŸšcop 4634  â€˜cfv 6543  Vtxcvtx 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7974  df-vtx 28255
This theorem is referenced by:  graop  28286  vtxvalsnop  28298  uhgrspanop  28550  fusgrfis  28584  cusgrsize  28708  fusgrmaxsize  28718  vtxdgop  28724  vtxdginducedm1  28797  vtxdginducedm1fi  28798  finsumvtxdg2ssteplem4  28802  finsumvtxdg2size  28804  eupth2lem3  29486  konigsberglem1  29502  konigsberglem2  29503  konigsberglem3  29504
  Copyright terms: Public domain W3C validator