MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 28987
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opvtxfv 28982 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
41, 2, 3mp2an 692 1 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cop 4579  cfv 6481  Vtxcvtx 28974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-vtx 28976
This theorem is referenced by:  graop  29007  vtxvalsnop  29019  uhgrspanop  29274  fusgrfis  29308  cusgrsize  29433  fusgrmaxsize  29443  vtxdgop  29449  vtxdginducedm1  29522  vtxdginducedm1fi  29523  finsumvtxdg2ssteplem4  29527  finsumvtxdg2size  29529  eupth2lem3  30216  konigsberglem1  30232  konigsberglem2  30233  konigsberglem3  30234
  Copyright terms: Public domain W3C validator