Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opvtxfvi | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
Ref | Expression |
---|---|
opvtxfvi.v | ⊢ 𝑉 ∈ V |
opvtxfvi.e | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
opvtxfvi | ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
3 | opvtxfv 27374 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 Vtxcvtx 27366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-1st 7831 df-vtx 27368 |
This theorem is referenced by: graop 27399 vtxvalsnop 27411 uhgrspanop 27663 fusgrfis 27697 cusgrsize 27821 fusgrmaxsize 27831 vtxdgop 27837 vtxdginducedm1 27910 vtxdginducedm1fi 27911 finsumvtxdg2ssteplem4 27915 finsumvtxdg2size 27917 eupth2lem3 28600 konigsberglem1 28616 konigsberglem2 28617 konigsberglem3 28618 |
Copyright terms: Public domain | W3C validator |