MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 28989
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opvtxfv 28984 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
41, 2, 3mp2an 692 1 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3444  cop 4591  cfv 6499  Vtxcvtx 28976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fv 6507  df-1st 7947  df-vtx 28978
This theorem is referenced by:  graop  29009  vtxvalsnop  29021  uhgrspanop  29276  fusgrfis  29310  cusgrsize  29435  fusgrmaxsize  29445  vtxdgop  29451  vtxdginducedm1  29524  vtxdginducedm1fi  29525  finsumvtxdg2ssteplem4  29529  finsumvtxdg2size  29531  eupth2lem3  30215  konigsberglem1  30231  konigsberglem2  30232  konigsberglem3  30233
  Copyright terms: Public domain W3C validator