MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 27379
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opvtxfv 27374 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
41, 2, 3mp2an 689 1 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cfv 6433  Vtxcvtx 27366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-vtx 27368
This theorem is referenced by:  graop  27399  vtxvalsnop  27411  uhgrspanop  27663  fusgrfis  27697  cusgrsize  27821  fusgrmaxsize  27831  vtxdgop  27837  vtxdginducedm1  27910  vtxdginducedm1fi  27911  finsumvtxdg2ssteplem4  27915  finsumvtxdg2size  27917  eupth2lem3  28600  konigsberglem1  28616  konigsberglem2  28617  konigsberglem3  28618
  Copyright terms: Public domain W3C validator