| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opvtxfvi | Structured version Visualization version GIF version | ||
| Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
| Ref | Expression |
|---|---|
| opvtxfvi.v | ⊢ 𝑉 ∈ V |
| opvtxfvi.e | ⊢ 𝐸 ∈ V |
| Ref | Expression |
|---|---|
| opvtxfvi | ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
| 2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
| 3 | opvtxfv 28982 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ‘cfv 6481 Vtxcvtx 28974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-vtx 28976 |
| This theorem is referenced by: graop 29007 vtxvalsnop 29019 uhgrspanop 29274 fusgrfis 29308 cusgrsize 29433 fusgrmaxsize 29443 vtxdgop 29449 vtxdginducedm1 29522 vtxdginducedm1fi 29523 finsumvtxdg2ssteplem4 29527 finsumvtxdg2size 29529 eupth2lem3 30216 konigsberglem1 30232 konigsberglem2 30233 konigsberglem3 30234 |
| Copyright terms: Public domain | W3C validator |