MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opvtxfvi Structured version   Visualization version   GIF version

Theorem opvtxfvi 28988
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opvtxfvi (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉

Proof of Theorem opvtxfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opvtxfv 28983 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
41, 2, 3mp2an 692 1 (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cfv 6531  Vtxcvtx 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fv 6539  df-1st 7988  df-vtx 28977
This theorem is referenced by:  graop  29008  vtxvalsnop  29020  uhgrspanop  29275  fusgrfis  29309  cusgrsize  29434  fusgrmaxsize  29444  vtxdgop  29450  vtxdginducedm1  29523  vtxdginducedm1fi  29524  finsumvtxdg2ssteplem4  29528  finsumvtxdg2size  29530  eupth2lem3  30217  konigsberglem1  30233  konigsberglem2  30234  konigsberglem3  30235
  Copyright terms: Public domain W3C validator