![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opvtxfvi | Structured version Visualization version GIF version |
Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
Ref | Expression |
---|---|
opvtxfvi.v | ⊢ 𝑉 ∈ V |
opvtxfvi.e | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
opvtxfvi | ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
3 | opvtxfv 29039 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (Vtx‘〈𝑉, 𝐸〉) = 𝑉) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (Vtx‘〈𝑉, 𝐸〉) = 𝑉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 Vtxcvtx 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-vtx 29033 |
This theorem is referenced by: graop 29064 vtxvalsnop 29076 uhgrspanop 29331 fusgrfis 29365 cusgrsize 29490 fusgrmaxsize 29500 vtxdgop 29506 vtxdginducedm1 29579 vtxdginducedm1fi 29580 finsumvtxdg2ssteplem4 29584 finsumvtxdg2size 29586 eupth2lem3 30268 konigsberglem1 30284 konigsberglem2 30285 konigsberglem3 30286 |
Copyright terms: Public domain | W3C validator |