MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfvi Structured version   Visualization version   GIF version

Theorem opiedgfvi 28538
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opiedgfvi (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸

Proof of Theorem opiedgfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opiedgfv 28535 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
41, 2, 3mp2an 689 1 (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3473  cop 4634  cfv 6543  iEdgciedg 28525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-2nd 7979  df-iedg 28527
This theorem is referenced by:  graop  28557  iedgvalsnop  28570  griedg0ssusgr  28790  uhgrspanop  28821  vtxdgop  28995  vtxdginducedm1lem1  29064  finsumvtxdg2size  29075  rgrusgrprc  29114  eupth2lem3  29757  konigsberglem1  29773  konigsberglem2  29774  konigsberglem3  29775
  Copyright terms: Public domain W3C validator