MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfvi Structured version   Visualization version   GIF version

Theorem opiedgfvi 27283
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opiedgfvi (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸

Proof of Theorem opiedgfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opiedgfv 27280 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
41, 2, 3mp2an 688 1 (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cfv 6418  iEdgciedg 27270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-2nd 7805  df-iedg 27272
This theorem is referenced by:  graop  27302  iedgvalsnop  27315  griedg0ssusgr  27535  uhgrspanop  27566  vtxdgop  27740  vtxdginducedm1lem1  27809  finsumvtxdg2size  27820  rgrusgrprc  27859  eupth2lem3  28501  konigsberglem1  28517  konigsberglem2  28518  konigsberglem3  28519
  Copyright terms: Public domain W3C validator