![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opiedgfvi | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
Ref | Expression |
---|---|
opvtxfvi.v | ⊢ 𝑉 ∈ V |
opvtxfvi.e | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
opiedgfvi | ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
3 | opiedgfv 28702 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3466 〈cop 4626 ‘cfv 6533 iEdgciedg 28692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fv 6541 df-2nd 7969 df-iedg 28694 |
This theorem is referenced by: graop 28724 iedgvalsnop 28737 griedg0ssusgr 28957 uhgrspanop 28988 vtxdgop 29162 vtxdginducedm1lem1 29231 finsumvtxdg2size 29242 rgrusgrprc 29281 eupth2lem3 29924 konigsberglem1 29940 konigsberglem2 29941 konigsberglem3 29942 |
Copyright terms: Public domain | W3C validator |