| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opiedgfvi | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
| Ref | Expression |
|---|---|
| opvtxfvi.v | ⊢ 𝑉 ∈ V |
| opvtxfvi.e | ⊢ 𝐸 ∈ V |
| Ref | Expression |
|---|---|
| opiedgfvi | ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
| 2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
| 3 | opiedgfv 28978 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2110 Vcvv 3434 〈cop 4580 ‘cfv 6477 iEdgciedg 28968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fv 6485 df-2nd 7917 df-iedg 28970 |
| This theorem is referenced by: graop 29000 iedgvalsnop 29013 griedg0ssusgr 29236 uhgrspanop 29267 vtxdgop 29442 vtxdginducedm1lem1 29511 finsumvtxdg2size 29522 rgrusgrprc 29561 eupth2lem3 30206 konigsberglem1 30222 konigsberglem2 30223 konigsberglem3 30224 |
| Copyright terms: Public domain | W3C validator |