Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opiedgfvi | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
Ref | Expression |
---|---|
opvtxfvi.v | ⊢ 𝑉 ∈ V |
opvtxfvi.e | ⊢ 𝐸 ∈ V |
Ref | Expression |
---|---|
opiedgfvi | ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
3 | opiedgfv 26904 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4531 ‘cfv 6339 iEdgciedg 26894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fv 6347 df-2nd 7699 df-iedg 26896 |
This theorem is referenced by: graop 26926 iedgvalsnop 26939 griedg0ssusgr 27159 uhgrspanop 27190 vtxdgop 27364 vtxdginducedm1lem1 27433 finsumvtxdg2size 27444 rgrusgrprc 27483 eupth2lem3 28125 konigsberglem1 28141 konigsberglem2 28142 konigsberglem3 28143 |
Copyright terms: Public domain | W3C validator |