MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfvi Structured version   Visualization version   GIF version

Theorem opiedgfvi 28937
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opiedgfvi (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸

Proof of Theorem opiedgfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opiedgfv 28934 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
41, 2, 3mp2an 692 1 (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cfv 6511  iEdgciedg 28924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-2nd 7969  df-iedg 28926
This theorem is referenced by:  graop  28956  iedgvalsnop  28969  griedg0ssusgr  29192  uhgrspanop  29223  vtxdgop  29398  vtxdginducedm1lem1  29467  finsumvtxdg2size  29478  rgrusgrprc  29517  eupth2lem3  30165  konigsberglem1  30181  konigsberglem2  30182  konigsberglem3  30183
  Copyright terms: Public domain W3C validator