| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opiedgfvi | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.) |
| Ref | Expression |
|---|---|
| opvtxfvi.v | ⊢ 𝑉 ∈ V |
| opvtxfvi.e | ⊢ 𝐸 ∈ V |
| Ref | Expression |
|---|---|
| opiedgfvi | ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opvtxfvi.v | . 2 ⊢ 𝑉 ∈ V | |
| 2 | opvtxfvi.e | . 2 ⊢ 𝐸 ∈ V | |
| 3 | opiedgfv 28952 | . 2 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘〈𝑉, 𝐸〉) = 𝐸) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (iEdg‘〈𝑉, 𝐸〉) = 𝐸 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3463 〈cop 4612 ‘cfv 6541 iEdgciedg 28942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fv 6549 df-2nd 7997 df-iedg 28944 |
| This theorem is referenced by: graop 28974 iedgvalsnop 28987 griedg0ssusgr 29210 uhgrspanop 29241 vtxdgop 29416 vtxdginducedm1lem1 29485 finsumvtxdg2size 29496 rgrusgrprc 29535 eupth2lem3 30183 konigsberglem1 30199 konigsberglem2 30200 konigsberglem3 30201 |
| Copyright terms: Public domain | W3C validator |