Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgfvi Structured version   Visualization version   GIF version

Theorem opiedgfvi 26907
 Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021.)
Hypotheses
Ref Expression
opvtxfvi.v 𝑉 ∈ V
opvtxfvi.e 𝐸 ∈ V
Assertion
Ref Expression
opiedgfvi (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸

Proof of Theorem opiedgfvi
StepHypRef Expression
1 opvtxfvi.v . 2 𝑉 ∈ V
2 opvtxfvi.e . 2 𝐸 ∈ V
3 opiedgfv 26904 . 2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
41, 2, 3mp2an 691 1 (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  Vcvv 3409  ⟨cop 4531  ‘cfv 6339  iEdgciedg 26894 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-iota 6298  df-fun 6341  df-fv 6347  df-2nd 7699  df-iedg 26896 This theorem is referenced by:  graop  26926  iedgvalsnop  26939  griedg0ssusgr  27159  uhgrspanop  27190  vtxdgop  27364  vtxdginducedm1lem1  27433  finsumvtxdg2size  27444  rgrusgrprc  27483  eupth2lem3  28125  konigsberglem1  28141  konigsberglem2  28142  konigsberglem3  28143
 Copyright terms: Public domain W3C validator