MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadifssran Structured version   Visualization version   GIF version

Theorem imadifssran 6176
Description: Condition for the range of a relation to be the range of one its restrictions. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
imadifssran ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem imadifssran
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5703 . . 3 (𝐹 “ (dom 𝐹𝐴)) = ran (𝐹 ↾ (dom 𝐹𝐴))
21sseq1i 4025 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴))
3 ssel 3990 . . . . . . 7 (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
4 resdm 6048 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
54eqcomd 2742 . . . . . . . . . . . . . 14 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
65adantr 480 . . . . . . . . . . . . 13 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → 𝐹 = (𝐹 ↾ dom 𝐹))
76rneqd 5953 . . . . . . . . . . . 12 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ran 𝐹 = ran (𝐹 ↾ dom 𝐹))
87eleq2d 2826 . . . . . . . . . . 11 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹 ↾ dom 𝐹)))
9 undif 4489 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∪ (dom 𝐹𝐴)) = dom 𝐹)
109biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ dom 𝐹 → (𝐴 ∪ (dom 𝐹𝐴)) = dom 𝐹)
1110eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ dom 𝐹 → dom 𝐹 = (𝐴 ∪ (dom 𝐹𝐴)))
1211reseq2d 6001 . . . . . . . . . . . . . . . . 17 (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ (𝐴 ∪ (dom 𝐹𝐴))))
13 resundi 6015 . . . . . . . . . . . . . . . . 17 (𝐹 ↾ (𝐴 ∪ (dom 𝐹𝐴))) = ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴)))
1412, 13eqtrdi 2792 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))))
1514rneqd 5953 . . . . . . . . . . . . . . 15 (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = ran ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))))
16 rnun 6170 . . . . . . . . . . . . . . 15 ran ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))) = (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴)))
1715, 16eqtrdi 2792 . . . . . . . . . . . . . 14 (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴))))
1817eleq2d 2826 . . . . . . . . . . . . 13 (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ 𝑦 ∈ (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴)))))
19 elun 4164 . . . . . . . . . . . . 13 (𝑦 ∈ (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴))) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))))
2018, 19bitrdi 287 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
2120adantl 481 . . . . . . . . . . 11 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
228, 21bitrd 279 . . . . . . . . . 10 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
2322adantl 481 . . . . . . . . 9 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
24 pm2.27 42 . . . . . . . . . . . 12 (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
2524jao1i 858 . . . . . . . . . . 11 ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
2625com12 32 . . . . . . . . . 10 ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → 𝑦 ∈ ran (𝐹𝐴)))
2726adantr 480 . . . . . . . . 9 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → 𝑦 ∈ ran (𝐹𝐴)))
2823, 27sylbid 240 . . . . . . . 8 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴)))
2928ex 412 . . . . . . 7 ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴))))
303, 29syl 17 . . . . . 6 (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴))))
3130impcom 407 . . . . 5 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴)))
3231ssrdv 4002 . . . 4 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran 𝐹 ⊆ ran (𝐹𝐴))
33 rnresss 6039 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
3433a1i 11 . . . 4 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran (𝐹𝐴) ⊆ ran 𝐹)
3532, 34eqssd 4014 . . 3 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran 𝐹 = ran (𝐹𝐴))
3635ex 412 . 2 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
372, 36biimtrid 242 1 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1538  wcel 2107  cdif 3961  cun 3962  wss 3964  dom cdm 5690  ran crn 5691  cres 5692  cima 5693  Rel wrel 5695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5150  df-opab 5212  df-xp 5696  df-rel 5697  df-cnv 5698  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703
This theorem is referenced by:  cyclnumvtx  29843
  Copyright terms: Public domain W3C validator