MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadifssran Structured version   Visualization version   GIF version

Theorem imadifssran 6124
Description: Condition for the range of a relation to be the range of one its restrictions. (Contributed by AV, 4-Oct-2025.)
Assertion
Ref Expression
imadifssran ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))

Proof of Theorem imadifssran
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5651 . . 3 (𝐹 “ (dom 𝐹𝐴)) = ran (𝐹 ↾ (dom 𝐹𝐴))
21sseq1i 3975 . 2 ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) ↔ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴))
3 ssel 3940 . . . . . . 7 (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
4 resdm 5997 . . . . . . . . . . . . . . 15 (Rel 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
54eqcomd 2735 . . . . . . . . . . . . . 14 (Rel 𝐹𝐹 = (𝐹 ↾ dom 𝐹))
65adantr 480 . . . . . . . . . . . . 13 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → 𝐹 = (𝐹 ↾ dom 𝐹))
76rneqd 5902 . . . . . . . . . . . 12 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ran 𝐹 = ran (𝐹 ↾ dom 𝐹))
87eleq2d 2814 . . . . . . . . . . 11 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹 ↾ dom 𝐹)))
9 undif 4445 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∪ (dom 𝐹𝐴)) = dom 𝐹)
109biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ dom 𝐹 → (𝐴 ∪ (dom 𝐹𝐴)) = dom 𝐹)
1110eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝐴 ⊆ dom 𝐹 → dom 𝐹 = (𝐴 ∪ (dom 𝐹𝐴)))
1211reseq2d 5950 . . . . . . . . . . . . . . . . 17 (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ (𝐴 ∪ (dom 𝐹𝐴))))
13 resundi 5964 . . . . . . . . . . . . . . . . 17 (𝐹 ↾ (𝐴 ∪ (dom 𝐹𝐴))) = ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴)))
1412, 13eqtrdi 2780 . . . . . . . . . . . . . . . 16 (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))))
1514rneqd 5902 . . . . . . . . . . . . . . 15 (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = ran ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))))
16 rnun 6118 . . . . . . . . . . . . . . 15 ran ((𝐹𝐴) ∪ (𝐹 ↾ (dom 𝐹𝐴))) = (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴)))
1715, 16eqtrdi 2780 . . . . . . . . . . . . . 14 (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴))))
1817eleq2d 2814 . . . . . . . . . . . . 13 (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ 𝑦 ∈ (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴)))))
19 elun 4116 . . . . . . . . . . . . 13 (𝑦 ∈ (ran (𝐹𝐴) ∪ ran (𝐹 ↾ (dom 𝐹𝐴))) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))))
2018, 19bitrdi 287 . . . . . . . . . . . 12 (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
2120adantl 481 . . . . . . . . . . 11 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
228, 21bitrd 279 . . . . . . . . . 10 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
2322adantl 481 . . . . . . . . 9 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)))))
24 pm2.27 42 . . . . . . . . . . . 12 (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
2524jao1i 858 . . . . . . . . . . 11 ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)))
2625com12 32 . . . . . . . . . 10 ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → 𝑦 ∈ ran (𝐹𝐴)))
2726adantr 480 . . . . . . . . 9 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → ((𝑦 ∈ ran (𝐹𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴))) → 𝑦 ∈ ran (𝐹𝐴)))
2823, 27sylbid 240 . . . . . . . 8 (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) ∧ (Rel 𝐹𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴)))
2928ex 412 . . . . . . 7 ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹𝐴)) → 𝑦 ∈ ran (𝐹𝐴)) → ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴))))
303, 29syl 17 . . . . . 6 (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴))))
3130impcom 407 . . . . 5 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → (𝑦 ∈ ran 𝐹𝑦 ∈ ran (𝐹𝐴)))
3231ssrdv 3952 . . . 4 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran 𝐹 ⊆ ran (𝐹𝐴))
33 rnresss 5988 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
3433a1i 11 . . . 4 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran (𝐹𝐴) ⊆ ran 𝐹)
3532, 34eqssd 3964 . . 3 (((Rel 𝐹𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴)) → ran 𝐹 = ran (𝐹𝐴))
3635ex 412 . 2 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → (ran (𝐹 ↾ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
372, 36biimtrid 242 1 ((Rel 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹𝐴)) ⊆ ran (𝐹𝐴) → ran 𝐹 = ran (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cdif 3911  cun 3912  wss 3914  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  cyclnumvtx  29730
  Copyright terms: Public domain W3C validator