| Step | Hyp | Ref
| Expression |
| 1 | | df-ima 5680 |
. . 3
⊢ (𝐹 “ (dom 𝐹 ∖ 𝐴)) = ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) |
| 2 | 1 | sseq1i 3994 |
. 2
⊢ ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) ↔ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴)) |
| 3 | | ssel 3959 |
. . . . . . 7
⊢ (ran
(𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 4 | | resdm 6026 |
. . . . . . . . . . . . . . 15
⊢ (Rel
𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
| 5 | 4 | eqcomd 2740 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝐹 → 𝐹 = (𝐹 ↾ dom 𝐹)) |
| 6 | 5 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → 𝐹 = (𝐹 ↾ dom 𝐹)) |
| 7 | 6 | rneqd 5931 |
. . . . . . . . . . . 12
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ran 𝐹 = ran (𝐹 ↾ dom 𝐹)) |
| 8 | 7 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ran (𝐹 ↾ dom 𝐹))) |
| 9 | | undif 4464 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ⊆ dom 𝐹 ↔ (𝐴 ∪ (dom 𝐹 ∖ 𝐴)) = dom 𝐹) |
| 10 | 9 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ⊆ dom 𝐹 → (𝐴 ∪ (dom 𝐹 ∖ 𝐴)) = dom 𝐹) |
| 11 | 10 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ dom 𝐹 → dom 𝐹 = (𝐴 ∪ (dom 𝐹 ∖ 𝐴))) |
| 12 | 11 | reseq2d 5979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = (𝐹 ↾ (𝐴 ∪ (dom 𝐹 ∖ 𝐴)))) |
| 13 | | resundi 5993 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ↾ (𝐴 ∪ (dom 𝐹 ∖ 𝐴))) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) |
| 14 | 12, 13 | eqtrdi 2785 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ⊆ dom 𝐹 → (𝐹 ↾ dom 𝐹) = ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ (dom 𝐹 ∖ 𝐴)))) |
| 15 | 14 | rneqd 5931 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = ran ((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ (dom 𝐹 ∖ 𝐴)))) |
| 16 | | rnun 6147 |
. . . . . . . . . . . . . . 15
⊢ ran
((𝐹 ↾ 𝐴) ∪ (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) |
| 17 | 15, 16 | eqtrdi 2785 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ dom 𝐹 → ran (𝐹 ↾ dom 𝐹) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)))) |
| 18 | 17 | eleq2d 2819 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ 𝑦 ∈ (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))))) |
| 19 | | elun 4135 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) ↔ (𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)))) |
| 20 | 18, 19 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆ dom 𝐹 → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))))) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . 11
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran (𝐹 ↾ dom 𝐹) ↔ (𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))))) |
| 22 | 8, 21 | bitrd 279 |
. . . . . . . . . 10
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))))) |
| 23 | 22 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) ∧ (Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹 ↔ (𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))))) |
| 24 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 25 | 24 | jao1i 858 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) → ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 26 | 25 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) → ((𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 27 | 26 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) ∧ (Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) → ((𝑦 ∈ ran (𝐹 ↾ 𝐴) ∨ 𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴))) → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 28 | 23, 27 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) ∧ (Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 29 | 28 | ex 412 |
. . . . . . 7
⊢ ((𝑦 ∈ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) → 𝑦 ∈ ran (𝐹 ↾ 𝐴)) → ((Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ran (𝐹 ↾ 𝐴)))) |
| 30 | 3, 29 | syl 17 |
. . . . . 6
⊢ (ran
(𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ((Rel 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ran (𝐹 ↾ 𝐴)))) |
| 31 | 30 | impcom 407 |
. . . . 5
⊢ (((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ ran (𝐹 ↾ 𝐴))) |
| 32 | 31 | ssrdv 3971 |
. . . 4
⊢ (((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴)) → ran 𝐹 ⊆ ran (𝐹 ↾ 𝐴)) |
| 33 | | rnresss 6017 |
. . . . 5
⊢ ran
(𝐹 ↾ 𝐴) ⊆ ran 𝐹 |
| 34 | 33 | a1i 11 |
. . . 4
⊢ (((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴)) → ran (𝐹 ↾ 𝐴) ⊆ ran 𝐹) |
| 35 | 32, 34 | eqssd 3983 |
. . 3
⊢ (((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) ∧ ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴)) → ran 𝐹 = ran (𝐹 ↾ 𝐴)) |
| 36 | 35 | ex 412 |
. 2
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (ran (𝐹 ↾ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ran 𝐹 = ran (𝐹 ↾ 𝐴))) |
| 37 | 2, 36 | biimtrid 242 |
1
⊢ ((Rel
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ (dom 𝐹 ∖ 𝐴)) ⊆ ran (𝐹 ↾ 𝐴) → ran 𝐹 = ran (𝐹 ↾ 𝐴))) |