MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclnumvtx Structured version   Visualization version   GIF version

Theorem cyclnumvtx 29787
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cyclnumvtx ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))

Proof of Theorem cyclnumvtx
StepHypRef Expression
1 iscycl 29778 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29712 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2736 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29601 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 wlkcl 29600 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 elnnnn0c 12551 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
7 frel 6716 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃)
873ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃)
9 fz1ssfz0 13645 . . . . . . . . . . . . . . . . 17 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
10 fdm 6720 . . . . . . . . . . . . . . . . 17 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
119, 10sseqtrrid 4007 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
138, 12jca 511 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
14103ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹)))
1514difeq1d 4105 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))))
16 nnnn0 12513 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
17 fz0sn0fz1 13667 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1918difeq1d 4105 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))))
20 1e0p1 12755 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
2120oveq1i 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹))
2221ineq2i 4197 . . . . . . . . . . . . . . . . . . . . . . 23 ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹)))
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹))))
24 elnn0uz 12902 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
2516, 24sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (ℤ‘0))
26 fzpreddisj 13595 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2823, 27eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅)
29 undif5 4465 . . . . . . . . . . . . . . . . . . . . 21 (({0} ∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3119, 30eqtrd 2771 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
32313ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
3315, 32eqtrd 2771 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0})
3433imaeq2d 6052 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0}))
35 ffn 6711 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
36 0elfz 13646 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
3716, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → 0 ∈ (0...(♯‘𝐹)))
3835, 37anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
39383adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
40 fnsnfv 6963 . . . . . . . . . . . . . . . . 17 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4234, 41eqtr4d 2774 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)})
43 elfz1end 13576 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4443biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
45443ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4645fvresd 6901 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹)))
47 ffun 6714 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
4847funresd 6584 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
50 ssdmres 6005 . . . . . . . . . . . . . . . . . . . . . 22 ((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5112, 50sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5245, 51eleqtrrd 2838 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))
5349, 52jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))))
54 fvelrn 7071 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5646, 55eqeltrrd 2836 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
57 eleq1 2823 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
5956, 58mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
6059snssd 4790 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6142, 60eqsstrd 3998 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6213, 61jca 511 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
63623exp 1119 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6463com3l 89 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
656, 64sylbir 235 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6665expcom 413 . . . . . . . . 9 (1 ≤ (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
6766com14 96 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
684, 5, 67sylc 65 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
692, 68syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
7069imp 406 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
711, 70sylbi 217 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
7271impcom 407 . . 3 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
73 imadifssran 6145 . . . . 5 ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → ((𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹)))))
7473imp 406 . . . 4 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹))))
7574fveq2d 6885 . . 3 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
7672, 75syl 17 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
77 cyclispth 29784 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
78 pthdifv 29717 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺))
7947adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃)
80 fzfid 13996 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin)
81 fnfi 9197 . . . . . . . . . . . . . 14 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...(♯‘𝐹)) ∈ Fin) → 𝑃 ∈ Fin)
8235, 80, 81syl2anr 597 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin)
83 1eluzge0 12913 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
8483a1i 11 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ (ℤ‘0))
85 fzss1 13585 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8786adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8810adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹)))
8987, 88sseqtrrd 4001 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
9079, 82, 893jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9190ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)))
925, 4, 91sylc 65 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
932, 92syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9493adantr 480 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
95 hashres 14461 . . . . . . . 8 ((Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
9694, 95syl 17 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
97 ovexd 7445 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V)
98 hashf1rn 14375 . . . . . . . 8 (((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
9997, 98sylancom 588 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
1002, 5syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101 hashfz1 14369 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
102100, 101syl 17 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
103102adantr 480 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
10496, 99, 1033eqtr3d 2779 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
105104ex 412 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹)))
10678, 105mpd 15 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10777, 106syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
108107adantl 481 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10976, 108eqtrd 2771 1 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  Fincfn 8964  0cc0 11134  1c1 11135   + caddc 11137  cle 11275  cn 12245  0cn0 12506  cuz 12857  ...cfz 13529  chash 14353  Vtxcvtx 28980  Walkscwlks 29581  Pathscpths 29697  Cyclesccycls 29772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-wlks 29584  df-trls 29677  df-pths 29701  df-cycls 29774
This theorem is referenced by:  cycl3grtri  47939
  Copyright terms: Public domain W3C validator