MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclnumvtx Structured version   Visualization version   GIF version

Theorem cyclnumvtx 29771
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cyclnumvtx ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))

Proof of Theorem cyclnumvtx
StepHypRef Expression
1 iscycl 29762 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29696 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2730 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29588 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 wlkcl 29587 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 elnnnn0c 12418 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
7 frel 6652 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃)
873ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃)
9 fz1ssfz0 13515 . . . . . . . . . . . . . . . . 17 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
10 fdm 6656 . . . . . . . . . . . . . . . . 17 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
119, 10sseqtrrid 3976 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
138, 12jca 511 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
14103ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹)))
1514difeq1d 4073 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))))
16 nnnn0 12380 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
17 fz0sn0fz1 13537 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1918difeq1d 4073 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))))
20 1e0p1 12622 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
2120oveq1i 7351 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹))
2221ineq2i 4165 . . . . . . . . . . . . . . . . . . . . . . 23 ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹)))
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹))))
24 elnn0uz 12769 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
2516, 24sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (ℤ‘0))
26 fzpreddisj 13465 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2823, 27eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅)
29 undif5 4433 . . . . . . . . . . . . . . . . . . . . 21 (({0} ∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3119, 30eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
32313ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
3315, 32eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0})
3433imaeq2d 6006 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0}))
35 ffn 6647 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
36 0elfz 13516 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
3716, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → 0 ∈ (0...(♯‘𝐹)))
3835, 37anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
39383adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
40 fnsnfv 6896 . . . . . . . . . . . . . . . . 17 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4234, 41eqtr4d 2768 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)})
43 elfz1end 13446 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4443biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
45443ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4645fvresd 6837 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹)))
47 ffun 6650 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
4847funresd 6520 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
50 ssdmres 5959 . . . . . . . . . . . . . . . . . . . . . 22 ((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5112, 50sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5245, 51eleqtrrd 2832 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))
5349, 52jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))))
54 fvelrn 7004 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5646, 55eqeltrrd 2830 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
57 eleq1 2817 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
5956, 58mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
6059snssd 4759 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6142, 60eqsstrd 3967 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6213, 61jca 511 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
63623exp 1119 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6463com3l 89 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
656, 64sylbir 235 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6665expcom 413 . . . . . . . . 9 (1 ≤ (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
6766com14 96 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
684, 5, 67sylc 65 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
692, 68syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
7069imp 406 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
711, 70sylbi 217 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
7271impcom 407 . . 3 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
73 imadifssran 6095 . . . . 5 ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → ((𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹)))))
7473imp 406 . . . 4 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹))))
7574fveq2d 6821 . . 3 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
7672, 75syl 17 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
77 cyclispth 29768 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
78 pthdifv 29701 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺))
7947adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃)
80 fzfid 13872 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin)
81 fnfi 9082 . . . . . . . . . . . . . 14 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...(♯‘𝐹)) ∈ Fin) → 𝑃 ∈ Fin)
8235, 80, 81syl2anr 597 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin)
83 1eluzge0 12770 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
8483a1i 11 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ (ℤ‘0))
85 fzss1 13455 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8786adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8810adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹)))
8987, 88sseqtrrd 3970 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
9079, 82, 893jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9190ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)))
925, 4, 91sylc 65 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
932, 92syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9493adantr 480 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
95 hashres 14337 . . . . . . . 8 ((Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
9694, 95syl 17 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
97 ovexd 7376 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V)
98 hashf1rn 14251 . . . . . . . 8 (((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
9997, 98sylancom 588 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
1002, 5syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101 hashfz1 14245 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
102100, 101syl 17 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
103102adantr 480 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
10496, 99, 1033eqtr3d 2773 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
105104ex 412 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹)))
10678, 105mpd 15 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10777, 106syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
108107adantl 481 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10976, 108eqtrd 2765 1 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  Vcvv 3434  cdif 3897  cun 3898  cin 3899  wss 3900  c0 4281  {csn 4574   class class class wbr 5089  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  Rel wrel 5619  Fun wfun 6471   Fn wfn 6472  wf 6473  1-1wf1 6474  cfv 6477  (class class class)co 7341  Fincfn 8864  0cc0 10998  1c1 10999   + caddc 11001  cle 11139  cn 12117  0cn0 12373  cuz 12724  ...cfz 13399  chash 14229  Vtxcvtx 28967  Walkscwlks 29568  Pathscpths 29681  Cyclesccycls 29756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-wlks 29571  df-trls 29662  df-pths 29685  df-cycls 29758
This theorem is referenced by:  cycl3grtri  47957
  Copyright terms: Public domain W3C validator