MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclnumvtx Structured version   Visualization version   GIF version

Theorem cyclnumvtx 29843
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cyclnumvtx ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))

Proof of Theorem cyclnumvtx
StepHypRef Expression
1 iscycl 29834 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29768 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2736 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29657 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 wlkcl 29656 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 elnnnn0c 12575 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
7 frel 6746 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃)
873ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃)
9 fz1ssfz0 13666 . . . . . . . . . . . . . . . . 17 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
10 fdm 6750 . . . . . . . . . . . . . . . . 17 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
119, 10sseqtrrid 4050 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
138, 12jca 511 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
14103ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹)))
1514difeq1d 4136 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))))
16 nnnn0 12537 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
17 fz0sn0fz1 13688 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1918difeq1d 4136 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))))
20 1e0p1 12779 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
2120oveq1i 7445 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹))
2221ineq2i 4226 . . . . . . . . . . . . . . . . . . . . . . 23 ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹)))
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹))))
24 elnn0uz 12927 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
2516, 24sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (ℤ‘0))
26 fzpreddisj 13616 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2823, 27eqtrd 2776 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅)
29 undif5 4492 . . . . . . . . . . . . . . . . . . . . 21 (({0} ∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3119, 30eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
32313ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
3315, 32eqtrd 2776 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0})
3433imaeq2d 6082 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0}))
35 ffn 6741 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
36 0elfz 13667 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
3716, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → 0 ∈ (0...(♯‘𝐹)))
3835, 37anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
39383adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
40 fnsnfv 6992 . . . . . . . . . . . . . . . . 17 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4234, 41eqtr4d 2779 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)})
43 elfz1end 13597 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4443biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
45443ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4645fvresd 6931 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹)))
47 ffun 6744 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
4847funresd 6614 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
50 ssdmres 6035 . . . . . . . . . . . . . . . . . . . . . 22 ((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5112, 50sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5245, 51eleqtrrd 2843 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))
5349, 52jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))))
54 fvelrn 7100 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5646, 55eqeltrrd 2841 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
57 eleq1 2828 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
5956, 58mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
6059snssd 4815 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6142, 60eqsstrd 4035 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6213, 61jca 511 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
63623exp 1119 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6463com3l 89 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
656, 64sylbir 235 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6665expcom 413 . . . . . . . . 9 (1 ≤ (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
6766com14 96 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
684, 5, 67sylc 65 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
692, 68syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
7069imp 406 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
711, 70sylbi 217 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
7271impcom 407 . . 3 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
73 imadifssran 6176 . . . . 5 ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → ((𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹)))))
7473imp 406 . . . 4 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹))))
7574fveq2d 6915 . . 3 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
7672, 75syl 17 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
77 cyclispth 29840 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
78 pthdifv 29773 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺))
7947adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃)
80 fzfid 14017 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin)
81 fnfi 9222 . . . . . . . . . . . . . 14 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...(♯‘𝐹)) ∈ Fin) → 𝑃 ∈ Fin)
8235, 80, 81syl2anr 597 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin)
83 1eluzge0 12938 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
8483a1i 11 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ (ℤ‘0))
85 fzss1 13606 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8786adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8810adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹)))
8987, 88sseqtrrd 4038 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
9079, 82, 893jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9190ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)))
925, 4, 91sylc 65 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
932, 92syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9493adantr 480 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
95 hashres 14480 . . . . . . . 8 ((Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
9694, 95syl 17 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
97 ovexd 7470 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V)
98 hashf1rn 14394 . . . . . . . 8 (((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
9997, 98sylancom 588 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
1002, 5syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101 hashfz1 14388 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
102100, 101syl 17 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
103102adantr 480 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
10496, 99, 1033eqtr3d 2784 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
105104ex 412 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹)))
10678, 105mpd 15 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10777, 106syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
108107adantl 481 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10976, 108eqtrd 2776 1 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1538  wcel 2107  Vcvv 3479  cdif 3961  cun 3962  cin 3963  wss 3964  c0 4340  {csn 4632   class class class wbr 5149  dom cdm 5690  ran crn 5691  cres 5692  cima 5693  Rel wrel 5695  Fun wfun 6560   Fn wfn 6561  wf 6562  1-1wf1 6563  cfv 6566  (class class class)co 7435  Fincfn 8990  0cc0 11159  1c1 11160   + caddc 11162  cle 11300  cn 12270  0cn0 12530  cuz 12882  ...cfz 13550  chash 14372  Vtxcvtx 29036  Walkscwlks 29637  Pathscpths 29753  Cyclesccycls 29828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-er 8750  df-map 8873  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-nn 12271  df-2 12333  df-n0 12531  df-xnn0 12604  df-z 12618  df-uz 12883  df-fz 13551  df-fzo 13698  df-hash 14373  df-word 14556  df-wlks 29640  df-trls 29733  df-pths 29757  df-cycls 29830
This theorem is referenced by:  cycl3grtri  47863
  Copyright terms: Public domain W3C validator