MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclnumvtx Structured version   Visualization version   GIF version

Theorem cyclnumvtx 29763
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cyclnumvtx ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))

Proof of Theorem cyclnumvtx
StepHypRef Expression
1 iscycl 29754 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29688 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2729 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29580 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 wlkcl 29579 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 elnnnn0c 12447 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
7 frel 6661 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃)
873ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃)
9 fz1ssfz0 13544 . . . . . . . . . . . . . . . . 17 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
10 fdm 6665 . . . . . . . . . . . . . . . . 17 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
119, 10sseqtrrid 3981 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
138, 12jca 511 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
14103ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹)))
1514difeq1d 4078 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))))
16 nnnn0 12409 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
17 fz0sn0fz1 13566 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1918difeq1d 4078 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))))
20 1e0p1 12651 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
2120oveq1i 7363 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹))
2221ineq2i 4170 . . . . . . . . . . . . . . . . . . . . . . 23 ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹)))
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹))))
24 elnn0uz 12798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
2516, 24sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (ℤ‘0))
26 fzpreddisj 13494 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2823, 27eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅)
29 undif5 4438 . . . . . . . . . . . . . . . . . . . . 21 (({0} ∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3119, 30eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
32313ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
3315, 32eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0})
3433imaeq2d 6015 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0}))
35 ffn 6656 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
36 0elfz 13545 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
3716, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → 0 ∈ (0...(♯‘𝐹)))
3835, 37anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
39383adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
40 fnsnfv 6906 . . . . . . . . . . . . . . . . 17 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4234, 41eqtr4d 2767 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)})
43 elfz1end 13475 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4443biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
45443ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4645fvresd 6846 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹)))
47 ffun 6659 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
4847funresd 6529 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
50 ssdmres 5968 . . . . . . . . . . . . . . . . . . . . . 22 ((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5112, 50sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5245, 51eleqtrrd 2831 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))
5349, 52jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))))
54 fvelrn 7014 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5646, 55eqeltrrd 2829 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
57 eleq1 2816 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
5956, 58mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
6059snssd 4763 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6142, 60eqsstrd 3972 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6213, 61jca 511 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
63623exp 1119 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6463com3l 89 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
656, 64sylbir 235 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6665expcom 413 . . . . . . . . 9 (1 ≤ (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
6766com14 96 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
684, 5, 67sylc 65 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
692, 68syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
7069imp 406 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
711, 70sylbi 217 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
7271impcom 407 . . 3 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
73 imadifssran 6104 . . . . 5 ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → ((𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹)))))
7473imp 406 . . . 4 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹))))
7574fveq2d 6830 . . 3 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
7672, 75syl 17 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
77 cyclispth 29760 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
78 pthdifv 29693 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺))
7947adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃)
80 fzfid 13898 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin)
81 fnfi 9102 . . . . . . . . . . . . . 14 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...(♯‘𝐹)) ∈ Fin) → 𝑃 ∈ Fin)
8235, 80, 81syl2anr 597 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin)
83 1eluzge0 12799 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
8483a1i 11 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ (ℤ‘0))
85 fzss1 13484 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8786adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8810adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹)))
8987, 88sseqtrrd 3975 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
9079, 82, 893jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9190ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)))
925, 4, 91sylc 65 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
932, 92syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9493adantr 480 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
95 hashres 14363 . . . . . . . 8 ((Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
9694, 95syl 17 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
97 ovexd 7388 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V)
98 hashf1rn 14277 . . . . . . . 8 (((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
9997, 98sylancom 588 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
1002, 5syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101 hashfz1 14271 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
102100, 101syl 17 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
103102adantr 480 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
10496, 99, 1033eqtr3d 2772 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
105104ex 412 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹)))
10678, 105mpd 15 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10777, 106syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
108107adantl 481 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10976, 108eqtrd 2764 1 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  Rel wrel 5628  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  Fincfn 8879  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cn 12146  0cn0 12402  cuz 12753  ...cfz 13428  chash 14255  Vtxcvtx 28959  Walkscwlks 29560  Pathscpths 29673  Cyclesccycls 29748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-wlks 29563  df-trls 29654  df-pths 29677  df-cycls 29750
This theorem is referenced by:  cycl3grtri  47930
  Copyright terms: Public domain W3C validator