Proof of Theorem cyclnumvtx
Step | Hyp | Ref
| Expression |
1 | | iscycl 29834 |
. . . . 5
⊢ (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) |
2 | | pthiswlk 29768 |
. . . . . . 7
⊢ (𝐹(Paths‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) |
3 | | eqid 2736 |
. . . . . . . . 9
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
4 | 3 | wlkp 29657 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) |
5 | | wlkcl 29656 |
. . . . . . . 8
⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
6 | | elnnnn0c 12575 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤
(♯‘𝐹))) |
7 | | frel 6746 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃) |
8 | 7 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃) |
9 | | fz1ssfz0 13666 |
. . . . . . . . . . . . . . . . 17
⊢
(1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)) |
10 | | fdm 6750 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹))) |
11 | 9, 10 | sseqtrrid 4050 |
. . . . . . . . . . . . . . . 16
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) →
(1...(♯‘𝐹))
⊆ dom 𝑃) |
12 | 11 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃) |
13 | 8, 12 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)) |
14 | 10 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹))) |
15 | 14 | difeq1d 4136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖
(1...(♯‘𝐹)))) |
16 | | nnnn0 12537 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝐹)
∈ ℕ → (♯‘𝐹) ∈
ℕ0) |
17 | | fz0sn0fz1 13688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝐹)
∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹)))) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹)
∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹)))) |
19 | 18 | difeq1d 4136 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹)
∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪
(1...(♯‘𝐹)))
∖ (1...(♯‘𝐹)))) |
20 | | 1e0p1 12779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 = (0 +
1) |
21 | 20 | oveq1i 7445 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹)) |
22 | 21 | ineq2i 4226 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({0}
∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 +
1)...(♯‘𝐹))) |
23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝐹)
∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 +
1)...(♯‘𝐹)))) |
24 | | elnn0uz 12927 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((♯‘𝐹)
∈ ℕ0 ↔ (♯‘𝐹) ∈
(ℤ≥‘0)) |
25 | 16, 24 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝐹)
∈ ℕ → (♯‘𝐹) ∈
(ℤ≥‘0)) |
26 | | fzpreddisj 13616 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((♯‘𝐹)
∈ (ℤ≥‘0) → ({0} ∩ ((0 +
1)...(♯‘𝐹))) =
∅) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((♯‘𝐹)
∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅) |
28 | 23, 27 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹)
∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅) |
29 | | undif5 4492 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (({0}
∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪
(1...(♯‘𝐹)))
∖ (1...(♯‘𝐹))) = {0}) |
30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹)
∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0}) |
31 | 19, 30 | eqtrd 2776 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐹)
∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0}) |
32 | 31 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖
(1...(♯‘𝐹))) =
{0}) |
33 | 15, 32 | eqtrd 2776 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0}) |
34 | 33 | imaeq2d 6082 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0})) |
35 | | ffn 6741 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹))) |
36 | | 0elfz 13667 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹)
∈ ℕ0 → 0 ∈ (0...(♯‘𝐹))) |
37 | 16, 36 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘𝐹)
∈ ℕ → 0 ∈ (0...(♯‘𝐹))) |
38 | 35, 37 | anim12i 613 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹)))) |
39 | 38 | 3adant3 1132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) |
40 | | fnsnfv 6992 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈
(0...(♯‘𝐹)))
→ {(𝑃‘0)} =
(𝑃 “
{0})) |
41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0})) |
42 | 34, 41 | eqtr4d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)}) |
43 | | elfz1end 13597 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((♯‘𝐹)
∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹))) |
44 | 43 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((♯‘𝐹)
∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹))) |
45 | 44 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹))) |
46 | 45 | fvresd 6931 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹))) |
47 | | ffun 6744 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃) |
48 | 47 | funresd 6614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹)))) |
49 | 48 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹)))) |
50 | | ssdmres 6035 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹))) |
51 | 12, 50 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹))) |
52 | 45, 51 | eleqtrrd 2843 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) |
53 | 49, 52 | jca 511 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))) |
54 | | fvelrn 7100 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
(𝑃 ↾
(1...(♯‘𝐹)))
∧ (♯‘𝐹)
∈ dom (𝑃 ↾
(1...(♯‘𝐹))))
→ ((𝑃 ↾
(1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))) |
56 | 46, 55 | eqeltrrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))) |
57 | | eleq1 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))) |
58 | 57 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))) |
59 | 56, 58 | mpbird 257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))) |
60 | 59 | snssd 4815 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) |
61 | 42, 60 | eqsstrd 4035 |
. . . . . . . . . . . . . 14
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))) |
62 | 13, 61 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))) |
63 | 62 | 3exp 1119 |
. . . . . . . . . . . 12
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))))) |
64 | 63 | com3l 89 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))))) |
65 | 6, 64 | sylbir 235 |
. . . . . . . . . 10
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))))) |
66 | 65 | expcom 413 |
. . . . . . . . 9
⊢ (1 ≤
(♯‘𝐹) →
((♯‘𝐹) ∈
ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))))))) |
67 | 66 | com14 96 |
. . . . . . . 8
⊢ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0
→ ((𝑃‘0) =
(𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))))))) |
68 | 4, 5, 67 | sylc 65 |
. . . . . . 7
⊢ (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))))) |
69 | 2, 68 | syl 17 |
. . . . . 6
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))))) |
70 | 69 | imp 406 |
. . . . 5
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))))) |
71 | 1, 70 | sylbi 217 |
. . . 4
⊢ (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))))) |
72 | 71 | impcom 407 |
. . 3
⊢ ((1 ≤
(♯‘𝐹) ∧
𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))) |
73 | | imadifssran 6176 |
. . . . 5
⊢ ((Rel
𝑃 ∧
(1...(♯‘𝐹))
⊆ dom 𝑃) →
((𝑃 “ (dom 𝑃 ∖
(1...(♯‘𝐹))))
⊆ ran (𝑃 ↾
(1...(♯‘𝐹)))
→ ran 𝑃 = ran (𝑃 ↾
(1...(♯‘𝐹))))) |
74 | 73 | imp 406 |
. . . 4
⊢ (((Rel
𝑃 ∧
(1...(♯‘𝐹))
⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))
→ ran 𝑃 = ran (𝑃 ↾
(1...(♯‘𝐹)))) |
75 | 74 | fveq2d 6915 |
. . 3
⊢ (((Rel
𝑃 ∧
(1...(♯‘𝐹))
⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾
(1...(♯‘𝐹))))
→ (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹))))) |
76 | 72, 75 | syl 17 |
. 2
⊢ ((1 ≤
(♯‘𝐹) ∧
𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾
(1...(♯‘𝐹))))) |
77 | | cyclispth 29840 |
. . . 4
⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) |
78 | | pthdifv 29773 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) |
79 | 47 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃) |
80 | | fzfid 14017 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐹)
∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin) |
81 | | fnfi 9222 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 Fn (0...(♯‘𝐹)) ∧
(0...(♯‘𝐹))
∈ Fin) → 𝑃 ∈
Fin) |
82 | 35, 80, 81 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin) |
83 | | 1eluzge0 12938 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
(ℤ≥‘0) |
84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐹)
∈ ℕ0 → 1 ∈
(ℤ≥‘0)) |
85 | | fzss1 13606 |
. . . . . . . . . . . . . . . 16
⊢ (1 ∈
(ℤ≥‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐹)
∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) |
87 | 86 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆
(0...(♯‘𝐹))) |
88 | 10 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹))) |
89 | 87, 88 | sseqtrrd 4038 |
. . . . . . . . . . . . 13
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃) |
90 | 79, 82, 89 | 3jca 1128 |
. . . . . . . . . . . 12
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)) |
91 | 90 | ex 412 |
. . . . . . . . . . 11
⊢
((♯‘𝐹)
∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))) |
92 | 5, 4, 91 | sylc 65 |
. . . . . . . . . 10
⊢ (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)) |
93 | 2, 92 | syl 17 |
. . . . . . . . 9
⊢ (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)) |
94 | 93 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)) |
95 | | hashres 14480 |
. . . . . . . 8
⊢ ((Fun
𝑃 ∧ 𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) =
(♯‘(1...(♯‘𝐹)))) |
96 | 94, 95 | syl 17 |
. . . . . . 7
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) =
(♯‘(1...(♯‘𝐹)))) |
97 | | ovexd 7470 |
. . . . . . . 8
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V) |
98 | | hashf1rn 14394 |
. . . . . . . 8
⊢
(((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾
(1...(♯‘𝐹))))) |
99 | 97, 98 | sylancom 588 |
. . . . . . 7
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾
(1...(♯‘𝐹))))) |
100 | 2, 5 | syl 17 |
. . . . . . . . 9
⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈
ℕ0) |
101 | | hashfz1 14388 |
. . . . . . . . 9
⊢
((♯‘𝐹)
∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹)) |
102 | 100, 101 | syl 17 |
. . . . . . . 8
⊢ (𝐹(Paths‘𝐺)𝑃 →
(♯‘(1...(♯‘𝐹))) = (♯‘𝐹)) |
103 | 102 | adantr 480 |
. . . . . . 7
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) →
(♯‘(1...(♯‘𝐹))) = (♯‘𝐹)) |
104 | 96, 99, 103 | 3eqtr3d 2784 |
. . . . . 6
⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾
(1...(♯‘𝐹)))) =
(♯‘𝐹)) |
105 | 104 | ex 412 |
. . . . 5
⊢ (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾
(1...(♯‘𝐹)))) =
(♯‘𝐹))) |
106 | 78, 105 | mpd 15 |
. . . 4
⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾
(1...(♯‘𝐹)))) =
(♯‘𝐹)) |
107 | 77, 106 | syl 17 |
. . 3
⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾
(1...(♯‘𝐹)))) =
(♯‘𝐹)) |
108 | 107 | adantl 481 |
. 2
⊢ ((1 ≤
(♯‘𝐹) ∧
𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾
(1...(♯‘𝐹)))) =
(♯‘𝐹)) |
109 | 76, 108 | eqtrd 2776 |
1
⊢ ((1 ≤
(♯‘𝐹) ∧
𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹)) |