MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cyclnumvtx Structured version   Visualization version   GIF version

Theorem cyclnumvtx 29785
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025.)
Assertion
Ref Expression
cyclnumvtx ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))

Proof of Theorem cyclnumvtx
StepHypRef Expression
1 iscycl 29776 . . . . 5 (𝐹(Cycles‘𝐺)𝑃 ↔ (𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))))
2 pthiswlk 29710 . . . . . . 7 (𝐹(Paths‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2731 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29602 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 wlkcl 29601 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 elnnnn0c 12432 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
7 frel 6662 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Rel 𝑃)
873ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Rel 𝑃)
9 fz1ssfz0 13529 . . . . . . . . . . . . . . . . 17 (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
10 fdm 6666 . . . . . . . . . . . . . . . . 17 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
119, 10sseqtrrid 3973 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
12113ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
138, 12jca 511 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
14103ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom 𝑃 = (0...(♯‘𝐹)))
1514difeq1d 4074 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))))
16 nnnn0 12394 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
17 fz0sn0fz1 13551 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1816, 17syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → (0...(♯‘𝐹)) = ({0} ∪ (1...(♯‘𝐹))))
1918difeq1d 4074 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))))
20 1e0p1 12636 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 = (0 + 1)
2120oveq1i 7362 . . . . . . . . . . . . . . . . . . . . . . . 24 (1...(♯‘𝐹)) = ((0 + 1)...(♯‘𝐹))
2221ineq2i 4166 . . . . . . . . . . . . . . . . . . . . . . 23 ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹)))
2322a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ({0} ∩ ((0 + 1)...(♯‘𝐹))))
24 elnn0uz 12783 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
2516, 24sylib 218 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (ℤ‘0))
26 fzpreddisj 13479 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ (ℤ‘0) → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → ({0} ∩ ((0 + 1)...(♯‘𝐹))) = ∅)
2823, 27eqtrd 2766 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ → ({0} ∩ (1...(♯‘𝐹))) = ∅)
29 undif5 4434 . . . . . . . . . . . . . . . . . . . . 21 (({0} ∩ (1...(♯‘𝐹))) = ∅ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3028, 29syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (({0} ∪ (1...(♯‘𝐹))) ∖ (1...(♯‘𝐹))) = {0})
3119, 30eqtrd 2766 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
32313ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((0...(♯‘𝐹)) ∖ (1...(♯‘𝐹))) = {0})
3315, 32eqtrd 2766 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (dom 𝑃 ∖ (1...(♯‘𝐹))) = {0})
3433imaeq2d 6014 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = (𝑃 “ {0}))
35 ffn 6657 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → 𝑃 Fn (0...(♯‘𝐹)))
36 0elfz 13530 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
3716, 36syl 17 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ ℕ → 0 ∈ (0...(♯‘𝐹)))
3835, 37anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
39383adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
40 fnsnfv 6907 . . . . . . . . . . . . . . . . 17 ((𝑃 Fn (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4139, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} = (𝑃 “ {0}))
4234, 41eqtr4d 2769 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) = {(𝑃‘0)})
43 elfz1end 13460 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ ↔ (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4443biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
45443ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ (1...(♯‘𝐹)))
4645fvresd 6848 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) = (𝑃‘(♯‘𝐹)))
47 ffun 6660 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
4847funresd 6530 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
49483ad2ant1 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → Fun (𝑃 ↾ (1...(♯‘𝐹))))
50 ssdmres 5967 . . . . . . . . . . . . . . . . . . . . . 22 ((1...(♯‘𝐹)) ⊆ dom 𝑃 ↔ dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5112, 50sylib 218 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → dom (𝑃 ↾ (1...(♯‘𝐹))) = (1...(♯‘𝐹)))
5245, 51eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹))))
5349, 52jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))))
54 fvelrn 7015 . . . . . . . . . . . . . . . . . . 19 ((Fun (𝑃 ↾ (1...(♯‘𝐹))) ∧ (♯‘𝐹) ∈ dom (𝑃 ↾ (1...(♯‘𝐹)))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5553, 54syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃 ↾ (1...(♯‘𝐹)))‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
5646, 55eqeltrrd 2832 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
57 eleq1 2819 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
58573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ ran (𝑃 ↾ (1...(♯‘𝐹)))))
5956, 58mpbird 257 . . . . . . . . . . . . . . . 16 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘0) ∈ ran (𝑃 ↾ (1...(♯‘𝐹))))
6059snssd 4760 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → {(𝑃‘0)} ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6142, 60eqsstrd 3964 . . . . . . . . . . . . . 14 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))
6213, 61jca 511 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
63623exp 1119 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6463com3l 89 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
656, 64sylbir 235 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
6665expcom 413 . . . . . . . . 9 (1 ≤ (♯‘𝐹) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
6766com14 96 . . . . . . . 8 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))))
684, 5, 67sylc 65 . . . . . . 7 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
692, 68syl 17 . . . . . 6 (𝐹(Paths‘𝐺)𝑃 → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))))
7069imp 406 . . . . 5 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
711, 70sylbi 217 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (1 ≤ (♯‘𝐹) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))))))
7271impcom 407 . . 3 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))))
73 imadifssran 6104 . . . . 5 ((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → ((𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹)))))
7473imp 406 . . . 4 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → ran 𝑃 = ran (𝑃 ↾ (1...(♯‘𝐹))))
7574fveq2d 6832 . . 3 (((Rel 𝑃 ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) ∧ (𝑃 “ (dom 𝑃 ∖ (1...(♯‘𝐹)))) ⊆ ran (𝑃 ↾ (1...(♯‘𝐹)))) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
7672, 75syl 17 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
77 cyclispth 29782 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
78 pthdifv 29715 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺))
7947adantl 481 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → Fun 𝑃)
80 fzfid 13886 . . . . . . . . . . . . . 14 ((♯‘𝐹) ∈ ℕ0 → (0...(♯‘𝐹)) ∈ Fin)
81 fnfi 9093 . . . . . . . . . . . . . 14 ((𝑃 Fn (0...(♯‘𝐹)) ∧ (0...(♯‘𝐹)) ∈ Fin) → 𝑃 ∈ Fin)
8235, 80, 81syl2anr 597 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝑃 ∈ Fin)
83 1eluzge0 12784 . . . . . . . . . . . . . . . . 17 1 ∈ (ℤ‘0)
8483a1i 11 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ (ℤ‘0))
85 fzss1 13469 . . . . . . . . . . . . . . . 16 (1 ∈ (ℤ‘0) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8684, 85syl 17 . . . . . . . . . . . . . . 15 ((♯‘𝐹) ∈ ℕ0 → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8786adantr 480 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ (0...(♯‘𝐹)))
8810adantl 481 . . . . . . . . . . . . . 14 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → dom 𝑃 = (0...(♯‘𝐹)))
8987, 88sseqtrrd 3967 . . . . . . . . . . . . 13 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (1...(♯‘𝐹)) ⊆ dom 𝑃)
9079, 82, 893jca 1128 . . . . . . . . . . . 12 (((♯‘𝐹) ∈ ℕ0𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9190ex 412 . . . . . . . . . . 11 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃)))
925, 4, 91sylc 65 . . . . . . . . . 10 (𝐹(Walks‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
932, 92syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
9493adantr 480 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃))
95 hashres 14351 . . . . . . . 8 ((Fun 𝑃𝑃 ∈ Fin ∧ (1...(♯‘𝐹)) ⊆ dom 𝑃) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
9694, 95syl 17 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘(1...(♯‘𝐹))))
97 ovexd 7387 . . . . . . . 8 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (1...(♯‘𝐹)) ∈ V)
98 hashf1rn 14265 . . . . . . . 8 (((1...(♯‘𝐹)) ∈ V ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
9997, 98sylancom 588 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))))
1002, 5syl 17 . . . . . . . . 9 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101 hashfz1 14259 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
102100, 101syl 17 . . . . . . . 8 (𝐹(Paths‘𝐺)𝑃 → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
103102adantr 480 . . . . . . 7 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘(1...(♯‘𝐹))) = (♯‘𝐹))
10496, 99, 1033eqtr3d 2774 . . . . . 6 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺)) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
105104ex 412 . . . . 5 (𝐹(Paths‘𝐺)𝑃 → ((𝑃 ↾ (1...(♯‘𝐹))):(1...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹)))
10678, 105mpd 15 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10777, 106syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
108107adantl 481 . 2 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran (𝑃 ↾ (1...(♯‘𝐹)))) = (♯‘𝐹))
10976, 108eqtrd 2766 1 ((1 ≤ (♯‘𝐹) ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘ran 𝑃) = (♯‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4282  {csn 4575   class class class wbr 5093  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Rel wrel 5624  Fun wfun 6481   Fn wfn 6482  wf 6483  1-1wf1 6484  cfv 6487  (class class class)co 7352  Fincfn 8875  0cc0 11012  1c1 11013   + caddc 11015  cle 11153  cn 12131  0cn0 12387  cuz 12738  ...cfz 13413  chash 14243  Vtxcvtx 28981  Walkscwlks 29582  Pathscpths 29695  Cyclesccycls 29770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244  df-word 14427  df-wlks 29585  df-trls 29676  df-pths 29699  df-cycls 29772
This theorem is referenced by:  cycl3grtri  48052
  Copyright terms: Public domain W3C validator