MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsbdaylem Structured version   Visualization version   GIF version

Theorem negsbdaylem 27962
Description: Lemma for negsbday 27963. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
negsbdaylem (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))

Proof of Theorem negsbdaylem
Dummy variables 𝑥 𝑥𝑂 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6863 . . 3 (𝑥 = 𝑥𝑂 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝑥𝑂)))
2 fveq2 6858 . . 3 (𝑥 = 𝑥𝑂 → ( bday 𝑥) = ( bday 𝑥𝑂))
31, 2sseq12d 3980 . 2 (𝑥 = 𝑥𝑂 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)))
4 2fveq3 6863 . . 3 (𝑥 = 𝐴 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝐴)))
5 fveq2 6858 . . 3 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
64, 5sseq12d 3980 . 2 (𝑥 = 𝐴 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴)))
7 negsval 27931 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
87fveq2d 6862 . . . . 5 (𝑥 No → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
98adantr 480 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
10 negscut2 27946 . . . . 5 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
11 lrold 27808 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = ( O ‘( bday 𝑥))
12 uncom 4121 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1311, 12eqtr3i 2754 . . . . . . . . 9 ( O ‘( bday 𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1413imaeq2i 6029 . . . . . . . 8 ( -us “ ( O ‘( bday 𝑥))) = ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥)))
15 imaundi 6122 . . . . . . . 8 ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1614, 15eqtri 2752 . . . . . . 7 ( -us “ ( O ‘( bday 𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1716imaeq2i 6029 . . . . . 6 ( bday “ ( -us “ ( O ‘( bday 𝑥)))) = ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥))))
1811raleqi 3297 . . . . . . 7 (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂))
19 oldbdayim 27800 . . . . . . . . . . . 12 (𝑥𝑂 ∈ ( O ‘( bday 𝑥)) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
2019adantl 481 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
21 bdayelon 27688 . . . . . . . . . . . . 13 ( bday ‘( -us𝑥𝑂)) ∈ On
22 bdayelon 27688 . . . . . . . . . . . . 13 ( bday 𝑥) ∈ On
23 ontr2 6380 . . . . . . . . . . . . 13 ((( bday ‘( -us𝑥𝑂)) ∈ On ∧ ( bday 𝑥) ∈ On) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2421, 22, 23mp2an 692 . . . . . . . . . . . 12 ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
2524a1i 11 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2620, 25mpan2d 694 . . . . . . . . . 10 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → (( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2726ralimdva 3145 . . . . . . . . 9 (𝑥 No → (∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2827imp 406 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
29 bdayfun 27684 . . . . . . . . . 10 Fun bday
30 imassrn 6042 . . . . . . . . . . 11 ( -us “ ( O ‘( bday 𝑥))) ⊆ ran -us
31 bdaydm 27686 . . . . . . . . . . . 12 dom bday = No
32 negsfo 27959 . . . . . . . . . . . . 13 -us : No onto No
33 forn 6775 . . . . . . . . . . . . 13 ( -us : No onto No → ran -us = No )
3432, 33ax-mp 5 . . . . . . . . . . . 12 ran -us = No
3531, 34eqtr4i 2755 . . . . . . . . . . 11 dom bday = ran -us
3630, 35sseqtrri 3996 . . . . . . . . . 10 ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday
37 funimass4 6925 . . . . . . . . . 10 ((Fun bday ∧ ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday ) → (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥)))
3829, 36, 37mp2an 692 . . . . . . . . 9 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥))
39 negsfn 27929 . . . . . . . . . 10 -us Fn No
40 oldssno 27769 . . . . . . . . . 10 ( O ‘( bday 𝑥)) ⊆ No
41 fveq2 6858 . . . . . . . . . . . 12 (𝑦 = ( -us𝑥𝑂) → ( bday 𝑦) = ( bday ‘( -us𝑥𝑂)))
4241eleq1d 2813 . . . . . . . . . . 11 (𝑦 = ( -us𝑥𝑂) → (( bday 𝑦) ∈ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4342ralima 7211 . . . . . . . . . 10 (( -us Fn No ∧ ( O ‘( bday 𝑥)) ⊆ No ) → (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4439, 40, 43mp2an 692 . . . . . . . . 9 (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4538, 44bitri 275 . . . . . . . 8 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4628, 45sylibr 234 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4718, 46sylan2b 594 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4817, 47eqsstrrid 3986 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
49 scutbdaybnd 27727 . . . . . 6 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday 𝑥) ∈ On ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5022, 49mp3an2 1451 . . . . 5 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5110, 48, 50syl2an2r 685 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
529, 51eqsstrd 3981 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥))
5352ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥)))
543, 6, 53noinds 27852 1 (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3912  wss 3914   class class class wbr 5107  dom cdm 5638  ran crn 5639  cima 5641  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387   No csur 27551   bday cbday 27553   <<s csslt 27692   |s cscut 27694   O cold 27751   L cleft 27753   R cright 27754   -us cnegs 27925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927
This theorem is referenced by:  negsbday  27963
  Copyright terms: Public domain W3C validator