MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsbdaylem Structured version   Visualization version   GIF version

Theorem negsbdaylem 27967
Description: Lemma for negsbday 27968. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
negsbdaylem (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))

Proof of Theorem negsbdaylem
Dummy variables 𝑥 𝑥𝑂 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6827 . . 3 (𝑥 = 𝑥𝑂 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝑥𝑂)))
2 fveq2 6822 . . 3 (𝑥 = 𝑥𝑂 → ( bday 𝑥) = ( bday 𝑥𝑂))
31, 2sseq12d 3969 . 2 (𝑥 = 𝑥𝑂 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)))
4 2fveq3 6827 . . 3 (𝑥 = 𝐴 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝐴)))
5 fveq2 6822 . . 3 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
64, 5sseq12d 3969 . 2 (𝑥 = 𝐴 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴)))
7 negsval 27936 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
87fveq2d 6826 . . . . 5 (𝑥 No → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
98adantr 480 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
10 negscut2 27951 . . . . 5 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
11 lrold 27811 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = ( O ‘( bday 𝑥))
12 uncom 4109 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1311, 12eqtr3i 2754 . . . . . . . . 9 ( O ‘( bday 𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1413imaeq2i 6009 . . . . . . . 8 ( -us “ ( O ‘( bday 𝑥))) = ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥)))
15 imaundi 6098 . . . . . . . 8 ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1614, 15eqtri 2752 . . . . . . 7 ( -us “ ( O ‘( bday 𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1716imaeq2i 6009 . . . . . 6 ( bday “ ( -us “ ( O ‘( bday 𝑥)))) = ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥))))
1811raleqi 3287 . . . . . . 7 (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂))
19 oldbdayim 27803 . . . . . . . . . . . 12 (𝑥𝑂 ∈ ( O ‘( bday 𝑥)) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
2019adantl 481 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
21 bdayelon 27686 . . . . . . . . . . . . 13 ( bday ‘( -us𝑥𝑂)) ∈ On
22 bdayelon 27686 . . . . . . . . . . . . 13 ( bday 𝑥) ∈ On
23 ontr2 6355 . . . . . . . . . . . . 13 ((( bday ‘( -us𝑥𝑂)) ∈ On ∧ ( bday 𝑥) ∈ On) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2421, 22, 23mp2an 692 . . . . . . . . . . . 12 ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
2524a1i 11 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2620, 25mpan2d 694 . . . . . . . . . 10 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → (( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2726ralimdva 3141 . . . . . . . . 9 (𝑥 No → (∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2827imp 406 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
29 bdayfun 27682 . . . . . . . . . 10 Fun bday
30 imassrn 6022 . . . . . . . . . . 11 ( -us “ ( O ‘( bday 𝑥))) ⊆ ran -us
31 bdaydm 27684 . . . . . . . . . . . 12 dom bday = No
32 negsfo 27964 . . . . . . . . . . . . 13 -us : No onto No
33 forn 6739 . . . . . . . . . . . . 13 ( -us : No onto No → ran -us = No )
3432, 33ax-mp 5 . . . . . . . . . . . 12 ran -us = No
3531, 34eqtr4i 2755 . . . . . . . . . . 11 dom bday = ran -us
3630, 35sseqtrri 3985 . . . . . . . . . 10 ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday
37 funimass4 6887 . . . . . . . . . 10 ((Fun bday ∧ ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday ) → (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥)))
3829, 36, 37mp2an 692 . . . . . . . . 9 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥))
39 negsfn 27934 . . . . . . . . . 10 -us Fn No
40 oldssno 27771 . . . . . . . . . 10 ( O ‘( bday 𝑥)) ⊆ No
41 fveq2 6822 . . . . . . . . . . . 12 (𝑦 = ( -us𝑥𝑂) → ( bday 𝑦) = ( bday ‘( -us𝑥𝑂)))
4241eleq1d 2813 . . . . . . . . . . 11 (𝑦 = ( -us𝑥𝑂) → (( bday 𝑦) ∈ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4342ralima 7173 . . . . . . . . . 10 (( -us Fn No ∧ ( O ‘( bday 𝑥)) ⊆ No ) → (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4439, 40, 43mp2an 692 . . . . . . . . 9 (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4538, 44bitri 275 . . . . . . . 8 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4628, 45sylibr 234 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4718, 46sylan2b 594 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4817, 47eqsstrrid 3975 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
49 scutbdaybnd 27726 . . . . . 6 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday 𝑥) ∈ On ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5022, 49mp3an2 1451 . . . . 5 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5110, 48, 50syl2an2r 685 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
529, 51eqsstrd 3970 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥))
5352ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥)))
543, 6, 53noinds 27857 1 (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3901  wss 3903   class class class wbr 5092  dom cdm 5619  ran crn 5620  cima 5622  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  ontowfo 6480  cfv 6482  (class class class)co 7349   No csur 27549   bday cbday 27551   <<s csslt 27691   |s cscut 27693   O cold 27753   L cleft 27755   R cright 27756   -us cnegs 27930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932
This theorem is referenced by:  negsbday  27968
  Copyright terms: Public domain W3C validator