MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsbdaylem Structured version   Visualization version   GIF version

Theorem negsbdaylem 28002
Description: Lemma for negsbday 28003. Bound the birthday of the negative of a surreal number above. (Contributed by Scott Fenton, 8-Mar-2025.)
Assertion
Ref Expression
negsbdaylem (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))

Proof of Theorem negsbdaylem
Dummy variables 𝑥 𝑥𝑂 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6845 . . 3 (𝑥 = 𝑥𝑂 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝑥𝑂)))
2 fveq2 6840 . . 3 (𝑥 = 𝑥𝑂 → ( bday 𝑥) = ( bday 𝑥𝑂))
31, 2sseq12d 3977 . 2 (𝑥 = 𝑥𝑂 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)))
4 2fveq3 6845 . . 3 (𝑥 = 𝐴 → ( bday ‘( -us𝑥)) = ( bday ‘( -us𝐴)))
5 fveq2 6840 . . 3 (𝑥 = 𝐴 → ( bday 𝑥) = ( bday 𝐴))
64, 5sseq12d 3977 . 2 (𝑥 = 𝐴 → (( bday ‘( -us𝑥)) ⊆ ( bday 𝑥) ↔ ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴)))
7 negsval 27971 . . . . . 6 (𝑥 No → ( -us𝑥) = (( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥))))
87fveq2d 6844 . . . . 5 (𝑥 No → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
98adantr 480 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))))
10 negscut2 27986 . . . . 5 (𝑥 No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)))
11 lrold 27846 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = ( O ‘( bday 𝑥))
12 uncom 4117 . . . . . . . . . 10 (( L ‘𝑥) ∪ ( R ‘𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1311, 12eqtr3i 2754 . . . . . . . . 9 ( O ‘( bday 𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥))
1413imaeq2i 6018 . . . . . . . 8 ( -us “ ( O ‘( bday 𝑥))) = ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥)))
15 imaundi 6110 . . . . . . . 8 ( -us “ (( R ‘𝑥) ∪ ( L ‘𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1614, 15eqtri 2752 . . . . . . 7 ( -us “ ( O ‘( bday 𝑥))) = (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))
1716imaeq2i 6018 . . . . . 6 ( bday “ ( -us “ ( O ‘( bday 𝑥)))) = ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥))))
1811raleqi 3294 . . . . . . 7 (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂))
19 oldbdayim 27838 . . . . . . . . . . . 12 (𝑥𝑂 ∈ ( O ‘( bday 𝑥)) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
2019adantl 481 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ( bday 𝑥𝑂) ∈ ( bday 𝑥))
21 bdayelon 27721 . . . . . . . . . . . . 13 ( bday ‘( -us𝑥𝑂)) ∈ On
22 bdayelon 27721 . . . . . . . . . . . . 13 ( bday 𝑥) ∈ On
23 ontr2 6368 . . . . . . . . . . . . 13 ((( bday ‘( -us𝑥𝑂)) ∈ On ∧ ( bday 𝑥) ∈ On) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2421, 22, 23mp2an 692 . . . . . . . . . . . 12 ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
2524a1i 11 . . . . . . . . . . 11 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → ((( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) ∧ ( bday 𝑥𝑂) ∈ ( bday 𝑥)) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2620, 25mpan2d 694 . . . . . . . . . 10 ((𝑥 No 𝑥𝑂 ∈ ( O ‘( bday 𝑥))) → (( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2726ralimdva 3145 . . . . . . . . 9 (𝑥 No → (∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
2827imp 406 . . . . . . . 8 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
29 bdayfun 27717 . . . . . . . . . 10 Fun bday
30 imassrn 6031 . . . . . . . . . . 11 ( -us “ ( O ‘( bday 𝑥))) ⊆ ran -us
31 bdaydm 27719 . . . . . . . . . . . 12 dom bday = No
32 negsfo 27999 . . . . . . . . . . . . 13 -us : No onto No
33 forn 6757 . . . . . . . . . . . . 13 ( -us : No onto No → ran -us = No )
3432, 33ax-mp 5 . . . . . . . . . . . 12 ran -us = No
3531, 34eqtr4i 2755 . . . . . . . . . . 11 dom bday = ran -us
3630, 35sseqtrri 3993 . . . . . . . . . 10 ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday
37 funimass4 6907 . . . . . . . . . 10 ((Fun bday ∧ ( -us “ ( O ‘( bday 𝑥))) ⊆ dom bday ) → (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥)))
3829, 36, 37mp2an 692 . . . . . . . . 9 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥))
39 negsfn 27969 . . . . . . . . . 10 -us Fn No
40 oldssno 27806 . . . . . . . . . 10 ( O ‘( bday 𝑥)) ⊆ No
41 fveq2 6840 . . . . . . . . . . . 12 (𝑦 = ( -us𝑥𝑂) → ( bday 𝑦) = ( bday ‘( -us𝑥𝑂)))
4241eleq1d 2813 . . . . . . . . . . 11 (𝑦 = ( -us𝑥𝑂) → (( bday 𝑦) ∈ ( bday 𝑥) ↔ ( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4342ralima 7193 . . . . . . . . . 10 (( -us Fn No ∧ ( O ‘( bday 𝑥)) ⊆ No ) → (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥)))
4439, 40, 43mp2an 692 . . . . . . . . 9 (∀𝑦 ∈ ( -us “ ( O ‘( bday 𝑥)))( bday 𝑦) ∈ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4538, 44bitri 275 . . . . . . . 8 (( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥) ↔ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ∈ ( bday 𝑥))
4628, 45sylibr 234 . . . . . . 7 ((𝑥 No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday 𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4718, 46sylan2b 594 . . . . . 6 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ ( -us “ ( O ‘( bday 𝑥)))) ⊆ ( bday 𝑥))
4817, 47eqsstrrid 3983 . . . . 5 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
49 scutbdaybnd 27761 . . . . . 6 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday 𝑥) ∈ On ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5022, 49mp3an2 1451 . . . . 5 ((( -us “ ( R ‘𝑥)) <<s ( -us “ ( L ‘𝑥)) ∧ ( bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
5110, 48, 50syl2an2r 685 . . . 4 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L ‘𝑥)))) ⊆ ( bday 𝑥))
529, 51eqsstrd 3978 . . 3 ((𝑥 No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂)) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥))
5352ex 412 . 2 (𝑥 No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday ‘( -us𝑥𝑂)) ⊆ ( bday 𝑥𝑂) → ( bday ‘( -us𝑥)) ⊆ ( bday 𝑥)))
543, 6, 53noinds 27892 1 (𝐴 No → ( bday ‘( -us𝐴)) ⊆ ( bday 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3909  wss 3911   class class class wbr 5102  dom cdm 5631  ran crn 5632  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369   No csur 27584   bday cbday 27586   <<s csslt 27726   |s cscut 27728   O cold 27788   L cleft 27790   R cright 27791   -us cnegs 27965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-1o 8411  df-2o 8412  df-nadd 8607  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27773  df-made 27792  df-old 27793  df-left 27795  df-right 27796  df-norec 27885  df-norec2 27896  df-adds 27907  df-negs 27967
This theorem is referenced by:  negsbday  28003
  Copyright terms: Public domain W3C validator