| Step | Hyp | Ref
| Expression |
| 1 | | 2fveq3 6886 |
. . 3
⊢ (𝑥 = 𝑥𝑂 → ( bday ‘( -us ‘𝑥)) = ( bday
‘( -us ‘𝑥𝑂))) |
| 2 | | fveq2 6881 |
. . 3
⊢ (𝑥 = 𝑥𝑂 → ( bday ‘𝑥) = ( bday
‘𝑥𝑂)) |
| 3 | 1, 2 | sseq12d 3997 |
. 2
⊢ (𝑥 = 𝑥𝑂 → (( bday ‘( -us ‘𝑥)) ⊆ ( bday
‘𝑥) ↔
( bday ‘( -us ‘𝑥𝑂)) ⊆
( bday ‘𝑥𝑂))) |
| 4 | | 2fveq3 6886 |
. . 3
⊢ (𝑥 = 𝐴 → ( bday
‘( -us ‘𝑥)) = ( bday
‘( -us ‘𝐴))) |
| 5 | | fveq2 6881 |
. . 3
⊢ (𝑥 = 𝐴 → ( bday
‘𝑥) = ( bday ‘𝐴)) |
| 6 | 4, 5 | sseq12d 3997 |
. 2
⊢ (𝑥 = 𝐴 → (( bday
‘( -us ‘𝑥)) ⊆ ( bday
‘𝑥) ↔
( bday ‘( -us ‘𝐴)) ⊆ ( bday ‘𝐴))) |
| 7 | | negsval 27988 |
. . . . . 6
⊢ (𝑥 ∈
No → ( -us ‘𝑥) = (( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) |
| 8 | 7 | fveq2d 6885 |
. . . . 5
⊢ (𝑥 ∈
No → ( bday ‘( -us
‘𝑥)) = ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ (
L ‘𝑥))))) |
| 9 | 8 | adantr 480 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday ‘( -us ‘𝑥)) = ( bday
‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L
‘𝑥))))) |
| 10 | | negscut2 28003 |
. . . . 5
⊢ (𝑥 ∈
No → ( -us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥))) |
| 11 | | lrold 27865 |
. . . . . . . . . 10
⊢ (( L
‘𝑥) ∪ ( R
‘𝑥)) = ( O
‘( bday ‘𝑥)) |
| 12 | | uncom 4138 |
. . . . . . . . . 10
⊢ (( L
‘𝑥) ∪ ( R
‘𝑥)) = (( R
‘𝑥) ∪ ( L
‘𝑥)) |
| 13 | 11, 12 | eqtr3i 2761 |
. . . . . . . . 9
⊢ ( O
‘( bday ‘𝑥)) = (( R ‘𝑥) ∪ ( L ‘𝑥)) |
| 14 | 13 | imaeq2i 6050 |
. . . . . . . 8
⊢ (
-us “ ( O ‘( bday
‘𝑥))) = (
-us “ (( R ‘𝑥) ∪ ( L ‘𝑥))) |
| 15 | | imaundi 6143 |
. . . . . . . 8
⊢ (
-us “ (( R ‘𝑥) ∪ ( L ‘𝑥))) = (( -us “ ( R
‘𝑥)) ∪ (
-us “ ( L ‘𝑥))) |
| 16 | 14, 15 | eqtri 2759 |
. . . . . . 7
⊢ (
-us “ ( O ‘( bday
‘𝑥))) = ((
-us “ ( R ‘𝑥)) ∪ ( -us “ ( L
‘𝑥))) |
| 17 | 16 | imaeq2i 6050 |
. . . . . 6
⊢ ( bday “ ( -us “ ( O
‘( bday ‘𝑥)))) = ( bday
“ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L
‘𝑥)))) |
| 18 | 11 | raleqi 3307 |
. . . . . . 7
⊢
(∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) ↔ ∀𝑥𝑂 ∈ ( O
‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) |
| 19 | | oldbdayim 27857 |
. . . . . . . . . . . 12
⊢ (𝑥𝑂 ∈ ( O
‘( bday ‘𝑥)) → ( bday
‘𝑥𝑂) ∈ ( bday ‘𝑥)) |
| 20 | 19 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))) → ( bday
‘𝑥𝑂) ∈ ( bday ‘𝑥)) |
| 21 | | bdayelon 27745 |
. . . . . . . . . . . . 13
⊢ ( bday ‘( -us ‘𝑥𝑂)) ∈
On |
| 22 | | bdayelon 27745 |
. . . . . . . . . . . . 13
⊢ ( bday ‘𝑥) ∈ On |
| 23 | | ontr2 6405 |
. . . . . . . . . . . . 13
⊢ ((( bday ‘( -us ‘𝑥𝑂)) ∈ On ∧ ( bday ‘𝑥) ∈ On) → (((
bday ‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) ∧ ( bday ‘𝑥𝑂) ∈ ( bday ‘𝑥)) → ( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥))) |
| 24 | 21, 22, 23 | mp2an 692 |
. . . . . . . . . . . 12
⊢ ((( bday ‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) ∧ ( bday ‘𝑥𝑂) ∈ ( bday ‘𝑥)) → ( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥)) |
| 25 | 24 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈
No ∧ 𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))) → ((( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) ∧ ( bday ‘𝑥𝑂) ∈ ( bday ‘𝑥)) → ( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥))) |
| 26 | 20, 25 | mpan2d 694 |
. . . . . . . . . 10
⊢ ((𝑥 ∈
No ∧ 𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))) → (( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) → ( bday ‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥))) |
| 27 | 26 | ralimdva 3153 |
. . . . . . . . 9
⊢ (𝑥 ∈
No → (∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) → ∀𝑥𝑂 ∈ ( O
‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥))) |
| 28 | 27 | imp 406 |
. . . . . . . 8
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ∀𝑥𝑂 ∈ ( O
‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥)) |
| 29 | | bdayfun 27741 |
. . . . . . . . . 10
⊢ Fun bday |
| 30 | | imassrn 6063 |
. . . . . . . . . . 11
⊢ (
-us “ ( O ‘( bday
‘𝑥))) ⊆
ran -us |
| 31 | | bdaydm 27743 |
. . . . . . . . . . . 12
⊢ dom bday = No
|
| 32 | | negsfo 28016 |
. . . . . . . . . . . . 13
⊢
-us : No –onto→ No
|
| 33 | | forn 6798 |
. . . . . . . . . . . . 13
⊢ (
-us : No –onto→ No → ran
-us = No ) |
| 34 | 32, 33 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran
-us = No |
| 35 | 31, 34 | eqtr4i 2762 |
. . . . . . . . . . 11
⊢ dom bday = ran -us |
| 36 | 30, 35 | sseqtrri 4013 |
. . . . . . . . . 10
⊢ (
-us “ ( O ‘( bday
‘𝑥))) ⊆
dom bday |
| 37 | | funimass4 6948 |
. . . . . . . . . 10
⊢ ((Fun
bday ∧ ( -us “ ( O
‘( bday ‘𝑥))) ⊆ dom bday
) → (( bday “ ( -us
“ ( O ‘( bday ‘𝑥)))) ⊆ ( bday ‘𝑥) ↔ ∀𝑦 ∈ ( -us “ ( O
‘( bday ‘𝑥)))( bday
‘𝑦) ∈
( bday ‘𝑥))) |
| 38 | 29, 36, 37 | mp2an 692 |
. . . . . . . . 9
⊢ (( bday “ ( -us “ ( O
‘( bday ‘𝑥)))) ⊆ ( bday
‘𝑥) ↔
∀𝑦 ∈ (
-us “ ( O ‘( bday
‘𝑥)))( bday ‘𝑦) ∈ ( bday
‘𝑥)) |
| 39 | | negsfn 27986 |
. . . . . . . . . 10
⊢
-us Fn No |
| 40 | | oldssno 27826 |
. . . . . . . . . 10
⊢ ( O
‘( bday ‘𝑥)) ⊆ No
|
| 41 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑦 = ( -us ‘𝑥𝑂) →
( bday ‘𝑦) = ( bday
‘( -us ‘𝑥𝑂))) |
| 42 | 41 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑦 = ( -us ‘𝑥𝑂) →
(( bday ‘𝑦) ∈ ( bday
‘𝑥) ↔
( bday ‘( -us ‘𝑥𝑂)) ∈
( bday ‘𝑥))) |
| 43 | 42 | ralima 7234 |
. . . . . . . . . 10
⊢ ((
-us Fn No ∧ ( O ‘( bday ‘𝑥)) ⊆ No )
→ (∀𝑦 ∈ (
-us “ ( O ‘( bday
‘𝑥)))( bday ‘𝑦) ∈ ( bday
‘𝑥) ↔
∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥))) |
| 44 | 39, 40, 43 | mp2an 692 |
. . . . . . . . 9
⊢
(∀𝑦 ∈ (
-us “ ( O ‘( bday
‘𝑥)))( bday ‘𝑦) ∈ ( bday
‘𝑥) ↔
∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥)) |
| 45 | 38, 44 | bitri 275 |
. . . . . . . 8
⊢ (( bday “ ( -us “ ( O
‘( bday ‘𝑥)))) ⊆ ( bday
‘𝑥) ↔
∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ∈ ( bday ‘𝑥)) |
| 46 | 28, 45 | sylibr 234 |
. . . . . . 7
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ ( O ‘( bday ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday “ ( -us “ ( O
‘( bday ‘𝑥)))) ⊆ ( bday
‘𝑥)) |
| 47 | 18, 46 | sylan2b 594 |
. . . . . 6
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday “ ( -us “ ( O
‘( bday ‘𝑥)))) ⊆ ( bday
‘𝑥)) |
| 48 | 17, 47 | eqsstrrid 4003 |
. . . . 5
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday “ (( -us “ ( R
‘𝑥)) ∪ (
-us “ ( L ‘𝑥)))) ⊆ ( bday
‘𝑥)) |
| 49 | | scutbdaybnd 27784 |
. . . . . 6
⊢ (((
-us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥)) ∧ ( bday ‘𝑥) ∈ On ∧ (
bday “ (( -us “ ( R ‘𝑥)) ∪ ( -us “ ( L
‘𝑥)))) ⊆ ( bday ‘𝑥)) → ( bday
‘(( -us “ ( R ‘𝑥)) |s ( -us “ ( L
‘𝑥)))) ⊆ ( bday ‘𝑥)) |
| 50 | 22, 49 | mp3an2 1451 |
. . . . 5
⊢ (((
-us “ ( R ‘𝑥)) <<s ( -us “ ( L
‘𝑥)) ∧ ( bday “ (( -us “ ( R
‘𝑥)) ∪ (
-us “ ( L ‘𝑥)))) ⊆ ( bday
‘𝑥)) →
( bday ‘(( -us “ ( R
‘𝑥)) |s (
-us “ ( L ‘𝑥)))) ⊆ ( bday
‘𝑥)) |
| 51 | 10, 48, 50 | syl2an2r 685 |
. . . 4
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday ‘(( -us “ ( R ‘𝑥)) |s ( -us “ (
L ‘𝑥)))) ⊆
( bday ‘𝑥)) |
| 52 | 9, 51 | eqsstrd 3998 |
. . 3
⊢ ((𝑥 ∈
No ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂)) → ( bday ‘( -us ‘𝑥)) ⊆ ( bday
‘𝑥)) |
| 53 | 52 | ex 412 |
. 2
⊢ (𝑥 ∈
No → (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))( bday
‘( -us ‘𝑥𝑂)) ⊆ ( bday ‘𝑥𝑂) → ( bday ‘( -us ‘𝑥)) ⊆ ( bday
‘𝑥))) |
| 54 | 3, 6, 53 | noinds 27909 |
1
⊢ (𝐴 ∈
No → ( bday ‘( -us
‘𝐴)) ⊆ ( bday ‘𝐴)) |