| Step | Hyp | Ref
| Expression |
| 1 | | negsunif.2 |
. . . 4
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
| 2 | | negsunif.1 |
. . . . 5
⊢ (𝜑 → 𝐿 <<s 𝑅) |
| 3 | 2 | scutcld 27772 |
. . . 4
⊢ (𝜑 → (𝐿 |s 𝑅) ∈ No
) |
| 4 | 1, 3 | eqeltrd 2835 |
. . 3
⊢ (𝜑 → 𝐴 ∈ No
) |
| 5 | | negsval 27988 |
. . 3
⊢ (𝐴 ∈
No → ( -us ‘𝐴) = (( -us “ ( R
‘𝐴)) |s (
-us “ ( L ‘𝐴)))) |
| 6 | 4, 5 | syl 17 |
. 2
⊢ (𝜑 → ( -us
‘𝐴) = ((
-us “ ( R ‘𝐴)) |s ( -us “ ( L
‘𝐴)))) |
| 7 | | negscut2 28003 |
. . . 4
⊢ (𝐴 ∈
No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L
‘𝐴))) |
| 8 | 4, 7 | syl 17 |
. . 3
⊢ (𝜑 → ( -us “ (
R ‘𝐴)) <<s (
-us “ ( L ‘𝐴))) |
| 9 | 2, 1 | cofcutr2d 27891 |
. . . . 5
⊢ (𝜑 → ∀𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ 𝑅 𝑑 ≤s 𝑐) |
| 10 | | negsfn 27986 |
. . . . . . . 8
⊢
-us Fn No |
| 11 | | ssltss2 27758 |
. . . . . . . . 9
⊢ (𝐿 <<s 𝑅 → 𝑅 ⊆ No
) |
| 12 | 2, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ No
) |
| 13 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑏 = ( -us ‘𝑑) → (( -us
‘𝑐) ≤s 𝑏 ↔ ( -us
‘𝑐) ≤s (
-us ‘𝑑))) |
| 14 | 13 | rexima 7235 |
. . . . . . . 8
⊢ ((
-us Fn No ∧ 𝑅 ⊆ No )
→ (∃𝑏 ∈ (
-us “ 𝑅)(
-us ‘𝑐)
≤s 𝑏 ↔ ∃𝑑 ∈ 𝑅 ( -us ‘𝑐) ≤s ( -us ‘𝑑))) |
| 15 | 10, 12, 14 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏 ↔ ∃𝑑 ∈ 𝑅 ( -us ‘𝑐) ≤s ( -us ‘𝑑))) |
| 16 | 15 | ralbidv 3164 |
. . . . . 6
⊢ (𝜑 → (∀𝑐 ∈ ( R ‘𝐴)∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏 ↔ ∀𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ 𝑅 ( -us ‘𝑐) ≤s ( -us ‘𝑑))) |
| 17 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → 𝑅 ⊆ No
) |
| 18 | 17 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ 𝑑 ∈ 𝑅) → 𝑑 ∈ No
) |
| 19 | | rightssno 27850 |
. . . . . . . . . . 11
⊢ ( R
‘𝐴) ⊆ No |
| 20 | 19 | sseli 3959 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ( R ‘𝐴) → 𝑐 ∈ No
) |
| 21 | 20 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ 𝑑 ∈ 𝑅) → 𝑐 ∈ No
) |
| 22 | 18, 21 | slenegd 28011 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) ∧ 𝑑 ∈ 𝑅) → (𝑑 ≤s 𝑐 ↔ ( -us ‘𝑐) ≤s ( -us
‘𝑑))) |
| 23 | 22 | rexbidva 3163 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ( R ‘𝐴)) → (∃𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ↔ ∃𝑑 ∈ 𝑅 ( -us ‘𝑐) ≤s ( -us ‘𝑑))) |
| 24 | 23 | ralbidva 3162 |
. . . . . 6
⊢ (𝜑 → (∀𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ 𝑅 𝑑 ≤s 𝑐 ↔ ∀𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ 𝑅 ( -us ‘𝑐) ≤s ( -us ‘𝑑))) |
| 25 | 16, 24 | bitr4d 282 |
. . . . 5
⊢ (𝜑 → (∀𝑐 ∈ ( R ‘𝐴)∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏 ↔ ∀𝑐 ∈ ( R ‘𝐴)∃𝑑 ∈ 𝑅 𝑑 ≤s 𝑐)) |
| 26 | 9, 25 | mpbird 257 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ ( R ‘𝐴)∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏) |
| 27 | | breq1 5127 |
. . . . . . 7
⊢ (𝑎 = ( -us ‘𝑐) → (𝑎 ≤s 𝑏 ↔ ( -us ‘𝑐) ≤s 𝑏)) |
| 28 | 27 | rexbidv 3165 |
. . . . . 6
⊢ (𝑎 = ( -us ‘𝑐) → (∃𝑏 ∈ ( -us “
𝑅)𝑎 ≤s 𝑏 ↔ ∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏)) |
| 29 | 28 | ralima 7234 |
. . . . 5
⊢ ((
-us Fn No ∧ ( R ‘𝐴) ⊆
No ) → (∀𝑎 ∈ ( -us “ ( R
‘𝐴))∃𝑏 ∈ ( -us “
𝑅)𝑎 ≤s 𝑏 ↔ ∀𝑐 ∈ ( R ‘𝐴)∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏)) |
| 30 | 10, 19, 29 | mp2an 692 |
. . . 4
⊢
(∀𝑎 ∈ (
-us “ ( R ‘𝐴))∃𝑏 ∈ ( -us “ 𝑅)𝑎 ≤s 𝑏 ↔ ∀𝑐 ∈ ( R ‘𝐴)∃𝑏 ∈ ( -us “ 𝑅)( -us ‘𝑐) ≤s 𝑏) |
| 31 | 26, 30 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ ( -us “ ( R
‘𝐴))∃𝑏 ∈ ( -us “
𝑅)𝑎 ≤s 𝑏) |
| 32 | 2, 1 | cofcutr1d 27890 |
. . . . 5
⊢ (𝜑 → ∀𝑐 ∈ ( L ‘𝐴)∃𝑑 ∈ 𝐿 𝑐 ≤s 𝑑) |
| 33 | | ssltss1 27757 |
. . . . . . . . 9
⊢ (𝐿 <<s 𝑅 → 𝐿 ⊆ No
) |
| 34 | 2, 33 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ⊆ No
) |
| 35 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑏 = ( -us ‘𝑑) → (𝑏 ≤s ( -us ‘𝑐) ↔ ( -us
‘𝑑) ≤s (
-us ‘𝑐))) |
| 36 | 35 | rexima 7235 |
. . . . . . . 8
⊢ ((
-us Fn No ∧ 𝐿 ⊆ No )
→ (∃𝑏 ∈ (
-us “ 𝐿)𝑏 ≤s ( -us ‘𝑐) ↔ ∃𝑑 ∈ 𝐿 ( -us ‘𝑑) ≤s ( -us ‘𝑐))) |
| 37 | 10, 34, 36 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐) ↔ ∃𝑑 ∈ 𝐿 ( -us ‘𝑑) ≤s ( -us ‘𝑐))) |
| 38 | 37 | ralbidv 3164 |
. . . . . 6
⊢ (𝜑 → (∀𝑐 ∈ ( L ‘𝐴)∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐) ↔ ∀𝑐 ∈ ( L ‘𝐴)∃𝑑 ∈ 𝐿 ( -us ‘𝑑) ≤s ( -us ‘𝑐))) |
| 39 | | leftssno 27849 |
. . . . . . . . . . 11
⊢ ( L
‘𝐴) ⊆ No |
| 40 | 39 | sseli 3959 |
. . . . . . . . . 10
⊢ (𝑐 ∈ ( L ‘𝐴) → 𝑐 ∈ No
) |
| 41 | 40 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ( L ‘𝐴)) ∧ 𝑑 ∈ 𝐿) → 𝑐 ∈ No
) |
| 42 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ( L ‘𝐴)) → 𝐿 ⊆ No
) |
| 43 | 42 | sselda 3963 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ ( L ‘𝐴)) ∧ 𝑑 ∈ 𝐿) → 𝑑 ∈ No
) |
| 44 | 41, 43 | slenegd 28011 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ ( L ‘𝐴)) ∧ 𝑑 ∈ 𝐿) → (𝑐 ≤s 𝑑 ↔ ( -us ‘𝑑) ≤s ( -us
‘𝑐))) |
| 45 | 44 | rexbidva 3163 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ( L ‘𝐴)) → (∃𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ↔ ∃𝑑 ∈ 𝐿 ( -us ‘𝑑) ≤s ( -us ‘𝑐))) |
| 46 | 45 | ralbidva 3162 |
. . . . . 6
⊢ (𝜑 → (∀𝑐 ∈ ( L ‘𝐴)∃𝑑 ∈ 𝐿 𝑐 ≤s 𝑑 ↔ ∀𝑐 ∈ ( L ‘𝐴)∃𝑑 ∈ 𝐿 ( -us ‘𝑑) ≤s ( -us ‘𝑐))) |
| 47 | 38, 46 | bitr4d 282 |
. . . . 5
⊢ (𝜑 → (∀𝑐 ∈ ( L ‘𝐴)∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐) ↔ ∀𝑐 ∈ ( L ‘𝐴)∃𝑑 ∈ 𝐿 𝑐 ≤s 𝑑)) |
| 48 | 32, 47 | mpbird 257 |
. . . 4
⊢ (𝜑 → ∀𝑐 ∈ ( L ‘𝐴)∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐)) |
| 49 | | breq2 5128 |
. . . . . . 7
⊢ (𝑎 = ( -us ‘𝑐) → (𝑏 ≤s 𝑎 ↔ 𝑏 ≤s ( -us ‘𝑐))) |
| 50 | 49 | rexbidv 3165 |
. . . . . 6
⊢ (𝑎 = ( -us ‘𝑐) → (∃𝑏 ∈ ( -us “
𝐿)𝑏 ≤s 𝑎 ↔ ∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐))) |
| 51 | 50 | ralima 7234 |
. . . . 5
⊢ ((
-us Fn No ∧ ( L ‘𝐴) ⊆
No ) → (∀𝑎 ∈ ( -us “ ( L
‘𝐴))∃𝑏 ∈ ( -us “
𝐿)𝑏 ≤s 𝑎 ↔ ∀𝑐 ∈ ( L ‘𝐴)∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐))) |
| 52 | 10, 39, 51 | mp2an 692 |
. . . 4
⊢
(∀𝑎 ∈ (
-us “ ( L ‘𝐴))∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s 𝑎 ↔ ∀𝑐 ∈ ( L ‘𝐴)∃𝑏 ∈ ( -us “ 𝐿)𝑏 ≤s ( -us ‘𝑐)) |
| 53 | 48, 52 | sylibr 234 |
. . 3
⊢ (𝜑 → ∀𝑎 ∈ ( -us “ ( L
‘𝐴))∃𝑏 ∈ ( -us “
𝐿)𝑏 ≤s 𝑎) |
| 54 | | fnfun 6643 |
. . . . . . 7
⊢ (
-us Fn No → Fun -us
) |
| 55 | 10, 54 | ax-mp 5 |
. . . . . 6
⊢ Fun
-us |
| 56 | | ssltex2 27756 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝑅 ∈ V) |
| 57 | 2, 56 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
| 58 | | funimaexg 6628 |
. . . . . 6
⊢ ((Fun
-us ∧ 𝑅
∈ V) → ( -us “ 𝑅) ∈ V) |
| 59 | 55, 57, 58 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ( -us “
𝑅) ∈
V) |
| 60 | | snex 5411 |
. . . . . 6
⊢ {(
-us ‘𝐴)}
∈ V |
| 61 | 60 | a1i 11 |
. . . . 5
⊢ (𝜑 → {( -us
‘𝐴)} ∈
V) |
| 62 | | imassrn 6063 |
. . . . . . 7
⊢ (
-us “ 𝑅)
⊆ ran -us |
| 63 | | negsfo 28016 |
. . . . . . . 8
⊢
-us : No –onto→ No
|
| 64 | | forn 6798 |
. . . . . . . 8
⊢ (
-us : No –onto→ No → ran
-us = No ) |
| 65 | 63, 64 | ax-mp 5 |
. . . . . . 7
⊢ ran
-us = No |
| 66 | 62, 65 | sseqtri 4012 |
. . . . . 6
⊢ (
-us “ 𝑅)
⊆ No |
| 67 | 66 | a1i 11 |
. . . . 5
⊢ (𝜑 → ( -us “
𝑅) ⊆ No ) |
| 68 | 4 | negscld 28000 |
. . . . . 6
⊢ (𝜑 → ( -us
‘𝐴) ∈ No ) |
| 69 | 68 | snssd 4790 |
. . . . 5
⊢ (𝜑 → {( -us
‘𝐴)} ⊆ No ) |
| 70 | | velsn 4622 |
. . . . . . . 8
⊢ (𝑎 ∈ {( -us
‘𝐴)} ↔ 𝑎 = ( -us ‘𝐴)) |
| 71 | | fvelimab 6956 |
. . . . . . . . . . 11
⊢ ((
-us Fn No ∧ 𝑅 ⊆ No )
→ (𝑏 ∈ (
-us “ 𝑅)
↔ ∃𝑑 ∈
𝑅 ( -us
‘𝑑) = 𝑏)) |
| 72 | 10, 12, 71 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑏 ∈ ( -us “ 𝑅) ↔ ∃𝑑 ∈ 𝑅 ( -us ‘𝑑) = 𝑏)) |
| 73 | 1 | sneqd 4618 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {𝐴} = {(𝐿 |s 𝑅)}) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → {𝐴} = {(𝐿 |s 𝑅)}) |
| 75 | | scutcut 27770 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 <<s 𝑅 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 76 | 2, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 77 | 76 | simp3d 1144 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → {(𝐿 |s 𝑅)} <<s 𝑅) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → {(𝐿 |s 𝑅)} <<s 𝑅) |
| 79 | 74, 78 | eqbrtrd 5146 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → {𝐴} <<s 𝑅) |
| 80 | | snidg 4641 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈
No → 𝐴 ∈
{𝐴}) |
| 81 | 4, 80 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
| 82 | 81 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → 𝐴 ∈ {𝐴}) |
| 83 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → 𝑑 ∈ 𝑅) |
| 84 | 79, 82, 83 | ssltsepcd 27763 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → 𝐴 <s 𝑑) |
| 85 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → 𝐴 ∈ No
) |
| 86 | 12 | sselda 3963 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → 𝑑 ∈ No
) |
| 87 | 85, 86 | sltnegd 28010 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → (𝐴 <s 𝑑 ↔ ( -us ‘𝑑) <s ( -us
‘𝐴))) |
| 88 | 84, 87 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → ( -us ‘𝑑) <s ( -us
‘𝐴)) |
| 89 | | breq1 5127 |
. . . . . . . . . . . 12
⊢ ((
-us ‘𝑑) =
𝑏 → (( -us
‘𝑑) <s (
-us ‘𝐴)
↔ 𝑏 <s (
-us ‘𝐴))) |
| 90 | 88, 89 | syl5ibcom 245 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ 𝑅) → (( -us ‘𝑑) = 𝑏 → 𝑏 <s ( -us ‘𝐴))) |
| 91 | 90 | rexlimdva 3142 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑑 ∈ 𝑅 ( -us ‘𝑑) = 𝑏 → 𝑏 <s ( -us ‘𝐴))) |
| 92 | 72, 91 | sylbid 240 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ ( -us “ 𝑅) → 𝑏 <s ( -us ‘𝐴))) |
| 93 | | breq2 5128 |
. . . . . . . . . 10
⊢ (𝑎 = ( -us ‘𝐴) → (𝑏 <s 𝑎 ↔ 𝑏 <s ( -us ‘𝐴))) |
| 94 | 93 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑎 = ( -us ‘𝐴) → ((𝑏 ∈ ( -us “ 𝑅) → 𝑏 <s 𝑎) ↔ (𝑏 ∈ ( -us “ 𝑅) → 𝑏 <s ( -us ‘𝐴)))) |
| 95 | 92, 94 | syl5ibrcom 247 |
. . . . . . . 8
⊢ (𝜑 → (𝑎 = ( -us ‘𝐴) → (𝑏 ∈ ( -us “ 𝑅) → 𝑏 <s 𝑎))) |
| 96 | 70, 95 | biimtrid 242 |
. . . . . . 7
⊢ (𝜑 → (𝑎 ∈ {( -us ‘𝐴)} → (𝑏 ∈ ( -us “ 𝑅) → 𝑏 <s 𝑎))) |
| 97 | 96 | 3imp 1110 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ {( -us ‘𝐴)} ∧ 𝑏 ∈ ( -us “ 𝑅)) → 𝑏 <s 𝑎) |
| 98 | 97 | 3com23 1126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ ( -us “ 𝑅) ∧ 𝑎 ∈ {( -us ‘𝐴)}) → 𝑏 <s 𝑎) |
| 99 | 59, 61, 67, 69, 98 | ssltd 27760 |
. . . 4
⊢ (𝜑 → ( -us “
𝑅) <<s {(
-us ‘𝐴)}) |
| 100 | 6 | sneqd 4618 |
. . . 4
⊢ (𝜑 → {( -us
‘𝐴)} = {((
-us “ ( R ‘𝐴)) |s ( -us “ ( L
‘𝐴)))}) |
| 101 | 99, 100 | breqtrd 5150 |
. . 3
⊢ (𝜑 → ( -us “
𝑅) <<s {((
-us “ ( R ‘𝐴)) |s ( -us “ ( L
‘𝐴)))}) |
| 102 | | ssltex1 27755 |
. . . . . . 7
⊢ (𝐿 <<s 𝑅 → 𝐿 ∈ V) |
| 103 | 2, 102 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ V) |
| 104 | | funimaexg 6628 |
. . . . . 6
⊢ ((Fun
-us ∧ 𝐿
∈ V) → ( -us “ 𝐿) ∈ V) |
| 105 | 55, 103, 104 | sylancr 587 |
. . . . 5
⊢ (𝜑 → ( -us “
𝐿) ∈
V) |
| 106 | | imassrn 6063 |
. . . . . . 7
⊢ (
-us “ 𝐿)
⊆ ran -us |
| 107 | 106, 65 | sseqtri 4012 |
. . . . . 6
⊢ (
-us “ 𝐿)
⊆ No |
| 108 | 107 | a1i 11 |
. . . . 5
⊢ (𝜑 → ( -us “
𝐿) ⊆ No ) |
| 109 | | fvelimab 6956 |
. . . . . . . . . 10
⊢ ((
-us Fn No ∧ 𝐿 ⊆ No )
→ (𝑏 ∈ (
-us “ 𝐿)
↔ ∃𝑐 ∈
𝐿 ( -us
‘𝑐) = 𝑏)) |
| 110 | 10, 34, 109 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝑏 ∈ ( -us “ 𝐿) ↔ ∃𝑐 ∈ 𝐿 ( -us ‘𝑐) = 𝑏)) |
| 111 | 2 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝐿 <<s 𝑅) |
| 112 | 111, 75 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → ((𝐿 |s 𝑅) ∈ No
∧ 𝐿 <<s {(𝐿 |s 𝑅)} ∧ {(𝐿 |s 𝑅)} <<s 𝑅)) |
| 113 | 112 | simp2d 1143 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝐿 <<s {(𝐿 |s 𝑅)}) |
| 114 | 73 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → {𝐴} = {(𝐿 |s 𝑅)}) |
| 115 | 113, 114 | breqtrrd 5152 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝐿 <<s {𝐴}) |
| 116 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝑐 ∈ 𝐿) |
| 117 | 81 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝐴 ∈ {𝐴}) |
| 118 | 115, 116,
117 | ssltsepcd 27763 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝑐 <s 𝐴) |
| 119 | 34 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝑐 ∈ No
) |
| 120 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → 𝐴 ∈ No
) |
| 121 | 119, 120 | sltnegd 28010 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → (𝑐 <s 𝐴 ↔ ( -us ‘𝐴) <s ( -us
‘𝑐))) |
| 122 | 118, 121 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → ( -us ‘𝐴) <s ( -us
‘𝑐)) |
| 123 | | breq2 5128 |
. . . . . . . . . . 11
⊢ ((
-us ‘𝑐) =
𝑏 → (( -us
‘𝐴) <s (
-us ‘𝑐)
↔ ( -us ‘𝐴) <s 𝑏)) |
| 124 | 122, 123 | syl5ibcom 245 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐿) → (( -us ‘𝑐) = 𝑏 → ( -us ‘𝐴) <s 𝑏)) |
| 125 | 124 | rexlimdva 3142 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑐 ∈ 𝐿 ( -us ‘𝑐) = 𝑏 → ( -us ‘𝐴) <s 𝑏)) |
| 126 | 110, 125 | sylbid 240 |
. . . . . . . 8
⊢ (𝜑 → (𝑏 ∈ ( -us “ 𝐿) → ( -us
‘𝐴) <s 𝑏)) |
| 127 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑎 = ( -us ‘𝐴) → (𝑎 <s 𝑏 ↔ ( -us ‘𝐴) <s 𝑏)) |
| 128 | 127 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑎 = ( -us ‘𝐴) → ((𝑏 ∈ ( -us “ 𝐿) → 𝑎 <s 𝑏) ↔ (𝑏 ∈ ( -us “ 𝐿) → ( -us
‘𝐴) <s 𝑏))) |
| 129 | 126, 128 | syl5ibrcom 247 |
. . . . . . 7
⊢ (𝜑 → (𝑎 = ( -us ‘𝐴) → (𝑏 ∈ ( -us “ 𝐿) → 𝑎 <s 𝑏))) |
| 130 | 70, 129 | biimtrid 242 |
. . . . . 6
⊢ (𝜑 → (𝑎 ∈ {( -us ‘𝐴)} → (𝑏 ∈ ( -us “ 𝐿) → 𝑎 <s 𝑏))) |
| 131 | 130 | 3imp 1110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ {( -us ‘𝐴)} ∧ 𝑏 ∈ ( -us “ 𝐿)) → 𝑎 <s 𝑏) |
| 132 | 61, 105, 69, 108, 131 | ssltd 27760 |
. . . 4
⊢ (𝜑 → {( -us
‘𝐴)} <<s (
-us “ 𝐿)) |
| 133 | 100, 132 | eqbrtrrd 5148 |
. . 3
⊢ (𝜑 → {(( -us “
( R ‘𝐴)) |s (
-us “ ( L ‘𝐴)))} <<s ( -us “
𝐿)) |
| 134 | 8, 31, 53, 101, 133 | cofcut1d 27886 |
. 2
⊢ (𝜑 → (( -us “
( R ‘𝐴)) |s (
-us “ ( L ‘𝐴))) = (( -us “ 𝑅) |s ( -us “
𝐿))) |
| 135 | 6, 134 | eqtrd 2771 |
1
⊢ (𝜑 → ( -us
‘𝐴) = ((
-us “ 𝑅)
|s ( -us “ 𝐿))) |