Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatsnafv2 Structured version   Visualization version   GIF version

Theorem dfatsnafv2 44744
Description: Singleton of function value, analogous to fnsnfv 6847. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatsnafv2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))

Proof of Theorem dfatsnafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦)
2 dfatbrafv2b 44737 . . . . 5 ((𝐹 defAt 𝐴𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
32elvd 3439 . . . 4 (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
41, 3syl5bb 283 . . 3 (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
54abbidv 2807 . 2 (𝐹 defAt 𝐴 → {𝑦𝑦 = (𝐹''''𝐴)} = {𝑦𝐴𝐹𝑦})
6 df-sn 4562 . . 3 {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)}
76a1i 11 . 2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)})
8 dfdfat2 44620 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
9 imasng 5991 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
109adantr 481 . . 3 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
118, 10sylbi 216 . 2 (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
125, 7, 113eqtr4d 2788 1 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ∃!weu 2568  {cab 2715  Vcvv 3432  {csn 4561   class class class wbr 5074  dom cdm 5589  cima 5592   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-dfat 44611  df-afv2 44701
This theorem is referenced by:  afv2co2  44749
  Copyright terms: Public domain W3C validator