| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatsnafv2 | Structured version Visualization version GIF version | ||
| Description: Singleton of function value, analogous to fnsnfv 6896. (Contributed by AV, 7-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatsnafv2 | ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2737 | . . . 4 ⊢ (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦) | |
| 2 | dfatbrafv2b 47255 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
| 3 | 2 | elvd 3440 | . . . 4 ⊢ (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
| 4 | 1, 3 | bitrid 283 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) |
| 5 | 4 | abbidv 2796 | . 2 ⊢ (𝐹 defAt 𝐴 → {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} = {𝑦 ∣ 𝐴𝐹𝑦}) |
| 6 | df-sn 4575 | . . 3 ⊢ {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)}) |
| 8 | dfdfat2 47138 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
| 9 | imasng 6030 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
| 11 | 8, 10 | sylbi 217 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
| 12 | 5, 7, 11 | 3eqtr4d 2775 | 1 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃!weu 2562 {cab 2708 Vcvv 3434 {csn 4574 class class class wbr 5089 dom cdm 5614 “ cima 5617 defAt wdfat 47126 ''''cafv2 47218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-dfat 47129 df-afv2 47219 |
| This theorem is referenced by: afv2co2 47267 |
| Copyright terms: Public domain | W3C validator |