Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatsnafv2 Structured version   Visualization version   GIF version

Theorem dfatsnafv2 47248
Description: Singleton of function value, analogous to fnsnfv 6963. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatsnafv2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))

Proof of Theorem dfatsnafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2743 . . . 4 (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦)
2 dfatbrafv2b 47241 . . . . 5 ((𝐹 defAt 𝐴𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
32elvd 3470 . . . 4 (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
41, 3bitrid 283 . . 3 (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
54abbidv 2802 . 2 (𝐹 defAt 𝐴 → {𝑦𝑦 = (𝐹''''𝐴)} = {𝑦𝐴𝐹𝑦})
6 df-sn 4607 . . 3 {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)}
76a1i 11 . 2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)})
8 dfdfat2 47124 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
9 imasng 6076 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
109adantr 480 . . 3 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
118, 10sylbi 217 . 2 (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
125, 7, 113eqtr4d 2781 1 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!weu 2568  {cab 2714  Vcvv 3464  {csn 4606   class class class wbr 5124  dom cdm 5659  cima 5662   defAt wdfat 47112  ''''cafv2 47204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-dfat 47115  df-afv2 47205
This theorem is referenced by:  afv2co2  47253
  Copyright terms: Public domain W3C validator