Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatsnafv2 | Structured version Visualization version GIF version |
Description: Singleton of function value, analogous to fnsnfv 6829. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
dfatsnafv2 | ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2745 | . . . 4 ⊢ (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦) | |
2 | dfatbrafv2b 44624 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
3 | 2 | elvd 3429 | . . . 4 ⊢ (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
4 | 1, 3 | syl5bb 282 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) |
5 | 4 | abbidv 2808 | . 2 ⊢ (𝐹 defAt 𝐴 → {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} = {𝑦 ∣ 𝐴𝐹𝑦}) |
6 | df-sn 4559 | . . 3 ⊢ {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)}) |
8 | dfdfat2 44507 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
9 | imasng 5980 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
11 | 8, 10 | sylbi 216 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
12 | 5, 7, 11 | 3eqtr4d 2788 | 1 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 {cab 2715 Vcvv 3422 {csn 4558 class class class wbr 5070 dom cdm 5580 “ cima 5583 defAt wdfat 44495 ''''cafv2 44587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-dfat 44498 df-afv2 44588 |
This theorem is referenced by: afv2co2 44636 |
Copyright terms: Public domain | W3C validator |