![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatsnafv2 | Structured version Visualization version GIF version |
Description: Singleton of function value, analogous to fnsnfv 7001. (Contributed by AV, 7-Sep-2022.) |
Ref | Expression |
---|---|
dfatsnafv2 | ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2747 | . . . 4 ⊢ (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦) | |
2 | dfatbrafv2b 47160 | . . . . 5 ⊢ ((𝐹 defAt 𝐴 ∧ 𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | |
3 | 2 | elvd 3494 | . . . 4 ⊢ (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) |
4 | 1, 3 | bitrid 283 | . . 3 ⊢ (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦)) |
5 | 4 | abbidv 2811 | . 2 ⊢ (𝐹 defAt 𝐴 → {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} = {𝑦 ∣ 𝐴𝐹𝑦}) |
6 | df-sn 4649 | . . 3 ⊢ {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)} | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦 ∣ 𝑦 = (𝐹''''𝐴)}) |
8 | dfdfat2 47043 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥)) | |
9 | imasng 6113 | . . . 4 ⊢ (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) | |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
11 | 8, 10 | sylbi 217 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦 ∣ 𝐴𝐹𝑦}) |
12 | 5, 7, 11 | 3eqtr4d 2790 | 1 ⊢ (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 {cab 2717 Vcvv 3488 {csn 4648 class class class wbr 5166 dom cdm 5700 “ cima 5703 defAt wdfat 47031 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: afv2co2 47172 |
Copyright terms: Public domain | W3C validator |