Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatsnafv2 Structured version   Visualization version   GIF version

Theorem dfatsnafv2 44631
Description: Singleton of function value, analogous to fnsnfv 6829. (Contributed by AV, 7-Sep-2022.)
Assertion
Ref Expression
dfatsnafv2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))

Proof of Theorem dfatsnafv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2745 . . . 4 (𝑦 = (𝐹''''𝐴) ↔ (𝐹''''𝐴) = 𝑦)
2 dfatbrafv2b 44624 . . . . 5 ((𝐹 defAt 𝐴𝑦 ∈ V) → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
32elvd 3429 . . . 4 (𝐹 defAt 𝐴 → ((𝐹''''𝐴) = 𝑦𝐴𝐹𝑦))
41, 3syl5bb 282 . . 3 (𝐹 defAt 𝐴 → (𝑦 = (𝐹''''𝐴) ↔ 𝐴𝐹𝑦))
54abbidv 2808 . 2 (𝐹 defAt 𝐴 → {𝑦𝑦 = (𝐹''''𝐴)} = {𝑦𝐴𝐹𝑦})
6 df-sn 4559 . . 3 {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)}
76a1i 11 . 2 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = {𝑦𝑦 = (𝐹''''𝐴)})
8 dfdfat2 44507 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥))
9 imasng 5980 . . . 4 (𝐴 ∈ dom 𝐹 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
109adantr 480 . . 3 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑥 𝐴𝐹𝑥) → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
118, 10sylbi 216 . 2 (𝐹 defAt 𝐴 → (𝐹 “ {𝐴}) = {𝑦𝐴𝐹𝑦})
125, 7, 113eqtr4d 2788 1 (𝐹 defAt 𝐴 → {(𝐹''''𝐴)} = (𝐹 “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!weu 2568  {cab 2715  Vcvv 3422  {csn 4558   class class class wbr 5070  dom cdm 5580  cima 5583   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-dfat 44498  df-afv2 44588
This theorem is referenced by:  afv2co2  44636
  Copyright terms: Public domain W3C validator