Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfib Structured version   Visualization version   GIF version

Theorem shftfib 14472
 Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfib ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))

Proof of Theorem shftfib
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7 𝐹 ∈ V
21shftfval 14470 . . . . . 6 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32breqd 5044 . . . . 5 (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧))
4 eleq1 2840 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
5 oveq1 7158 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
65breq1d 5043 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑦))
74, 6anbi12d 634 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦)))
8 breq2 5037 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐵𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑧))
98anbi2d 632 . . . . . . 7 (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
10 eqid 2759 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
117, 9, 10brabg 5397 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1211elvd 3417 . . . . 5 (𝐵 ∈ ℂ → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
133, 12sylan9bb 514 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
14 ibar 533 . . . . 5 (𝐵 ∈ ℂ → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1514adantl 486 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1613, 15bitr4d 285 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵𝐴)𝐹𝑧))
1716abbidv 2823 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
18 imasng 5924 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
1918adantl 486 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
20 ovex 7184 . . 3 (𝐵𝐴) ∈ V
21 imasng 5924 . . 3 ((𝐵𝐴) ∈ V → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2220, 21mp1i 13 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2317, 19, 223eqtr4d 2804 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112  {cab 2736  Vcvv 3410  {csn 4523   class class class wbr 5033  {copab 5095   “ cima 5528  (class class class)co 7151  ℂcc 10566   − cmin 10901   shift cshi 14466 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-po 5444  df-so 5445  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-ltxr 10711  df-sub 10903  df-shft 14467 This theorem is referenced by:  shftval  14474
 Copyright terms: Public domain W3C validator