![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > shftfib | Structured version Visualization version GIF version |
Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
Ref | Expression |
---|---|
shftfval.1 | ⊢ 𝐹 ∈ V |
Ref | Expression |
---|---|
shftfib | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shftfval.1 | . . . . . . 7 ⊢ 𝐹 ∈ V | |
2 | 1 | shftfval 15106 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) |
3 | 2 | breqd 5159 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧 ↔ 𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧)) |
4 | eleq1 2827 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ)) | |
5 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑥 − 𝐴) = (𝐵 − 𝐴)) | |
6 | 5 | breq1d 5158 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → ((𝑥 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑦)) |
7 | 4, 6 | anbi12d 632 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦))) |
8 | breq2 5152 | . . . . . . . 8 ⊢ (𝑦 = 𝑧 → ((𝐵 − 𝐴)𝐹𝑦 ↔ (𝐵 − 𝐴)𝐹𝑧)) | |
9 | 8 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
10 | eqid 2735 | . . . . . . 7 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)} | |
11 | 7, 9, 10 | brabg 5549 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
12 | 11 | elvd 3484 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
13 | 3, 12 | sylan9bb 509 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
14 | ibar 528 | . . . . 5 ⊢ (𝐵 ∈ ℂ → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) | |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵 − 𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵 − 𝐴)𝐹𝑧))) |
16 | 13, 15 | bitr4d 282 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 − 𝐴)𝐹𝑧)) |
17 | 16 | abbidv 2806 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
18 | imasng 6104 | . . 3 ⊢ (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) | |
19 | 18 | adantl 481 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧 ∣ 𝐵(𝐹 shift 𝐴)𝑧}) |
20 | ovex 7464 | . . 3 ⊢ (𝐵 − 𝐴) ∈ V | |
21 | imasng 6104 | . . 3 ⊢ ((𝐵 − 𝐴) ∈ V → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) | |
22 | 20, 21 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵 − 𝐴)}) = {𝑧 ∣ (𝐵 − 𝐴)𝐹𝑧}) |
23 | 17, 19, 22 | 3eqtr4d 2785 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 Vcvv 3478 {csn 4631 class class class wbr 5148 {copab 5210 “ cima 5692 (class class class)co 7431 ℂcc 11151 − cmin 11490 shift cshi 15102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-shft 15103 |
This theorem is referenced by: shftval 15110 |
Copyright terms: Public domain | W3C validator |