MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfib Structured version   Visualization version   GIF version

Theorem shftfib 14031
Description: Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfib ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))

Proof of Theorem shftfib
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . . . . 7 𝐹 ∈ V
21shftfval 14029 . . . . . 6 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32breqd 4855 . . . . 5 (𝐴 ∈ ℂ → (𝐵(𝐹 shift 𝐴)𝑧𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧))
4 eleq1 2873 . . . . . . . 8 (𝑥 = 𝐵 → (𝑥 ∈ ℂ ↔ 𝐵 ∈ ℂ))
5 oveq1 6877 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑥𝐴) = (𝐵𝐴))
65breq1d 4854 . . . . . . . 8 (𝑥 = 𝐵 → ((𝑥𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑦))
74, 6anbi12d 618 . . . . . . 7 (𝑥 = 𝐵 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦)))
8 breq2 4848 . . . . . . . 8 (𝑦 = 𝑧 → ((𝐵𝐴)𝐹𝑦 ↔ (𝐵𝐴)𝐹𝑧))
98anbi2d 616 . . . . . . 7 (𝑦 = 𝑧 → ((𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑦) ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
10 eqid 2806 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
117, 9, 10brabg 5189 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝑧 ∈ V) → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1211elvd 3396 . . . . 5 (𝐵 ∈ ℂ → (𝐵{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
133, 12sylan9bb 501 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
14 ibar 520 . . . . 5 (𝐵 ∈ ℂ → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1514adantl 469 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵𝐴)𝐹𝑧 ↔ (𝐵 ∈ ℂ ∧ (𝐵𝐴)𝐹𝑧)))
1613, 15bitr4d 273 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵(𝐹 shift 𝐴)𝑧 ↔ (𝐵𝐴)𝐹𝑧))
1716abbidv 2925 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → {𝑧𝐵(𝐹 shift 𝐴)𝑧} = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
18 imasng 5697 . . 3 (𝐵 ∈ ℂ → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
1918adantl 469 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = {𝑧𝐵(𝐹 shift 𝐴)𝑧})
20 ovex 6902 . . 3 (𝐵𝐴) ∈ V
21 imasng 5697 . . 3 ((𝐵𝐴) ∈ V → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2220, 21mp1i 13 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹 “ {(𝐵𝐴)}) = {𝑧 ∣ (𝐵𝐴)𝐹𝑧})
2317, 19, 223eqtr4d 2850 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  {cab 2792  Vcvv 3391  {csn 4370   class class class wbr 4844  {copab 4906  cima 5314  (class class class)co 6870  cc 10215  cmin 10547   shift cshi 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-ltxr 10360  df-sub 10549  df-shft 14026
This theorem is referenced by:  shftval  14033
  Copyright terms: Public domain W3C validator