MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndc Structured version   Visualization version   GIF version

Theorem met2ndc 24537
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndc (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝑥,𝑋

Proof of Theorem met2ndc
StepHypRef Expression
1 eqid 2736 . . . 4 𝐽 = 𝐽
212ndcsep 23468 . . 3 (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽))
3 methaus.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopnuni 24452 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
54pweqd 4616 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
64eqeq2d 2747 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (((cls‘𝐽)‘𝑥) = 𝑋 ↔ ((cls‘𝐽)‘𝑥) = 𝐽))
76anbi2d 630 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽)))
85, 7rexeqbidv 3346 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽)))
92, 8imbitrrid 246 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
10 elpwi 4606 . . . 4 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
113met2ndci 24536 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) → 𝐽 ∈ 2ndω)
12113exp2 1354 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥 ≼ ω → (((cls‘𝐽)‘𝑥) = 𝑋𝐽 ∈ 2ndω))))
1312imp4a 422 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω)))
1410, 13syl5 34 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝒫 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω)))
1514rexlimdv 3152 . 2 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))
169, 15impbid 212 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3069  wss 3950  𝒫 cpw 4599   cuni 4906   class class class wbr 5142  cfv 6560  ωcom 7888  cdom 8984  ∞Metcxmet 21350  MetOpencmopn 21355  clsccl 23027  2ndωc2ndc 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-2ndc 23449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator