| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > met2ndc | Structured version Visualization version GIF version | ||
| Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.) |
| Ref | Expression |
|---|---|
| methaus.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| met2ndc | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | 2ndcsep 23394 | . . 3 ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
| 3 | methaus.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 4 | 3 | mopnuni 24376 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 5 | 4 | pweqd 4568 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝒫 𝑋 = 𝒫 ∪ 𝐽) |
| 6 | 4 | eqeq2d 2744 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (((cls‘𝐽)‘𝑥) = 𝑋 ↔ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
| 7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
| 8 | 5, 7 | rexeqbidv 3314 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
| 9 | 2, 8 | imbitrrid 246 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
| 10 | elpwi 4558 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
| 11 | 3 | met2ndci 24457 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) → 𝐽 ∈ 2ndω) |
| 12 | 11 | 3exp2 1355 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → (𝑥 ≼ ω → (((cls‘𝐽)‘𝑥) = 𝑋 → 𝐽 ∈ 2ndω)))) |
| 13 | 12 | imp4a 422 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
| 14 | 10, 13 | syl5 34 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝒫 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
| 15 | 14 | rexlimdv 3132 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω)) |
| 16 | 9, 15 | impbid 212 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 class class class wbr 5095 ‘cfv 6489 ωcom 7805 ≼ cdom 8877 ∞Metcxmet 21285 MetOpencmopn 21290 clsccl 22953 2ndωc2ndc 23373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-acn 9846 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-topgen 17354 df-psmet 21292 df-xmet 21293 df-bl 21295 df-mopn 21296 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-2ndc 23375 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |