Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > met2ndc | Structured version Visualization version GIF version |
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.) |
Ref | Expression |
---|---|
methaus.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
met2ndc | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | 2ndcsep 22591 | . . 3 ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
3 | methaus.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopnuni 23575 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
5 | 4 | pweqd 4557 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝒫 𝑋 = 𝒫 ∪ 𝐽) |
6 | 4 | eqeq2d 2750 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (((cls‘𝐽)‘𝑥) = 𝑋 ↔ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
7 | 6 | anbi2d 628 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
8 | 5, 7 | rexeqbidv 3335 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
9 | 2, 8 | syl5ibr 245 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
10 | elpwi 4547 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
11 | 3 | met2ndci 23659 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) → 𝐽 ∈ 2ndω) |
12 | 11 | 3exp2 1352 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → (𝑥 ≼ ω → (((cls‘𝐽)‘𝑥) = 𝑋 → 𝐽 ∈ 2ndω)))) |
13 | 12 | imp4a 422 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
14 | 10, 13 | syl5 34 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝒫 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
15 | 14 | rexlimdv 3213 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω)) |
16 | 9, 15 | impbid 211 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 class class class wbr 5078 ‘cfv 6430 ωcom 7700 ≼ cdom 8705 ∞Metcxmet 20563 MetOpencmopn 20568 clsccl 22150 2ndωc2ndc 22570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cc 10175 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-acn 9684 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-bl 20573 df-mopn 20574 df-top 22024 df-topon 22041 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-2ndc 22572 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |