![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > met2ndc | Structured version Visualization version GIF version |
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.) |
Ref | Expression |
---|---|
methaus.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
met2ndc | ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | 2ndcsep 23483 | . . 3 ⊢ (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
3 | methaus.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopnuni 24467 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
5 | 4 | pweqd 4622 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝒫 𝑋 = 𝒫 ∪ 𝐽) |
6 | 4 | eqeq2d 2746 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (((cls‘𝐽)‘𝑥) = 𝑋 ↔ ((cls‘𝐽)‘𝑥) = ∪ 𝐽)) |
7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
8 | 5, 7 | rexeqbidv 3345 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ ∃𝑥 ∈ 𝒫 ∪ 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = ∪ 𝐽))) |
9 | 2, 8 | imbitrrid 246 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
10 | elpwi 4612 | . . . 4 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
11 | 3 | met2ndci 24551 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ⊆ 𝑋 ∧ 𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) → 𝐽 ∈ 2ndω) |
12 | 11 | 3exp2 1353 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → (𝑥 ≼ ω → (((cls‘𝐽)‘𝑥) = 𝑋 → 𝐽 ∈ 2ndω)))) |
13 | 12 | imp4a 422 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ⊆ 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
14 | 10, 13 | syl5 34 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝒫 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω))) |
15 | 14 | rexlimdv 3151 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2ndω)) |
16 | 9, 15 | impbid 212 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ‘cfv 6563 ωcom 7887 ≼ cdom 8982 ∞Metcxmet 21367 MetOpencmopn 21372 clsccl 23042 2ndωc2ndc 23462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cc 10473 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-acn 9980 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-2ndc 23464 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |