MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  met2ndc Structured version   Visualization version   GIF version

Theorem met2ndc 22836
Description: A metric space is second-countable iff it is separable (has a countable dense subset). (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
methaus.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
met2ndc (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
Distinct variable groups:   𝑥,𝐷   𝑥,𝐽   𝑥,𝑋

Proof of Theorem met2ndc
StepHypRef Expression
1 eqid 2778 . . . 4 𝐽 = 𝐽
212ndcsep 21771 . . 3 (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽))
3 methaus.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopnuni 22754 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
54pweqd 4427 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝒫 𝑋 = 𝒫 𝐽)
64eqeq2d 2788 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (((cls‘𝐽)‘𝑥) = 𝑋 ↔ ((cls‘𝐽)‘𝑥) = 𝐽))
76anbi2d 619 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ (𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽)))
85, 7rexeqbidv 3342 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) ↔ ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝐽)))
92, 8syl5ibr 238 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2nd𝜔 → ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
10 elpwi 4432 . . . 4 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
113met2ndci 22835 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥𝑋𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)) → 𝐽 ∈ 2nd𝜔)
12113exp2 1334 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → (𝑥 ≼ ω → (((cls‘𝐽)‘𝑥) = 𝑋𝐽 ∈ 2nd𝜔))))
1312imp4a 415 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑥𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2nd𝜔)))
1410, 13syl5 34 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝒫 𝑋 → ((𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2nd𝜔)))
1514rexlimdv 3228 . 2 (𝐷 ∈ (∞Met‘𝑋) → (∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋) → 𝐽 ∈ 2nd𝜔))
169, 15impbid 204 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐽 ∈ 2nd𝜔 ↔ ∃𝑥 ∈ 𝒫 𝑋(𝑥 ≼ ω ∧ ((cls‘𝐽)‘𝑥) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wrex 3089  wss 3829  𝒫 cpw 4422   cuni 4712   class class class wbr 4929  cfv 6188  ωcom 7396  cdom 8304  ∞Metcxmet 20232  MetOpencmopn 20237  clsccl 21330  2nd𝜔c2ndc 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cc 9655  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-acn 9165  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-bl 20242  df-mopn 20243  df-top 21206  df-topon 21223  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-2ndc 21752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator