Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnneN Structured version   Visualization version   GIF version

Theorem 2llnneN 37918
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lnne.l ≀ = (leβ€˜πΎ)
2lnne.j ∨ = (joinβ€˜πΎ)
2lnne.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
2llnneN ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑃) β‰  (𝑅 ∨ 𝑄))

Proof of Theorem 2llnneN
StepHypRef Expression
1 simp1 1137 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐾 ∈ HL)
2 simp21 1207 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑃 ∈ 𝐴)
3 simp23 1209 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ 𝑅 ∈ 𝐴)
4 simp21 1207 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑃 ∈ 𝐴)
5 simp23 1209 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑅 ∈ 𝐴)
6 simp22 1208 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ 𝑄 ∈ 𝐴)
74, 5, 63jca 1129 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
8 2lnne.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
9 2lnne.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
10 2lnne.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
118, 9, 10hlatexch2 37905 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
127, 11syld3an2 1412 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
1312con3d 152 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) β†’ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄)))
14133exp 1120 . . . 4 (𝐾 ∈ HL β†’ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑃 β‰  𝑄 β†’ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) β†’ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄)))))
1514imp4a 424 . . 3 (𝐾 ∈ HL β†’ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ ((𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄))))
16153imp 1112 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄))
178, 9, 102llnne2N 37917 . 2 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄)) β†’ (𝑅 ∨ 𝑃) β‰  (𝑅 ∨ 𝑄))
181, 2, 3, 16, 17syl121anc 1376 1 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))) β†’ (𝑅 ∨ 𝑃) β‰  (𝑅 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  lecple 17145  joincjn 18205  Atomscatm 37771  HLchlt 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-lat 18326  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator