MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neibl Structured version   Visualization version   GIF version

Theorem neibl 24422
Description: The neighborhoods around a point 𝑃 of a metric space are those subsets containing a ball around 𝑃. Definition of neighborhood in [Kreyszig] p. 19. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypothesis
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
neibl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
Distinct variable groups:   𝐷,𝑟   𝐽,𝑟   𝑁,𝑟   𝑃,𝑟   𝑋,𝑟

Proof of Theorem neibl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mopni.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
21mopntop 24361 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
32adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝐽 ∈ Top)
41mopnuni 24362 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
54eleq2d 2814 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑃𝑋𝑃 𝐽))
65biimpa 476 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → 𝑃 𝐽)
7 eqid 2729 . . . 4 𝐽 = 𝐽
87isneip 23025 . . 3 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
93, 6, 8syl2anc 584 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
104sseq2d 3976 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑁𝑋𝑁 𝐽))
1110adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁𝑋𝑁 𝐽))
1211anbi1d 631 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁 𝐽 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
131mopni2 24414 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦)
14 sstr2 3950 . . . . . . . . . . 11 ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑦𝑁 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1514com12 32 . . . . . . . . . 10 (𝑦𝑁 → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1615reximdv 3148 . . . . . . . . 9 (𝑦𝑁 → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑦 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
1713, 16syl5com 31 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦𝐽𝑃𝑦) → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
18173exp 1119 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → (𝑃𝑦 → (𝑦𝑁 → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))))
1918imp4a 422 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2019ad2antrr 726 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (𝑦𝐽 → ((𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2120rexlimdv 3132 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) → ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
22 rpxr 12937 . . . . . . . . 9 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
231blopn 24421 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
2422, 23syl3an3 1165 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑟) ∈ 𝐽)
25 blcntr 24334 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑟))
26 eleq2 2817 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑃𝑦𝑃 ∈ (𝑃(ball‘𝐷)𝑟)))
27 sseq1 3969 . . . . . . . . . . 11 (𝑦 = (𝑃(ball‘𝐷)𝑟) → (𝑦𝑁 ↔ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
2826, 27anbi12d 632 . . . . . . . . . 10 (𝑦 = (𝑃(ball‘𝐷)𝑟) → ((𝑃𝑦𝑦𝑁) ↔ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
2928rspcev 3585 . . . . . . . . 9 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽 ∧ (𝑃 ∈ (𝑃(ball‘𝐷)𝑟) ∧ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)) → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))
3029expr 456 . . . . . . . 8 (((𝑃(ball‘𝐷)𝑟) ∈ 𝐽𝑃 ∈ (𝑃(ball‘𝐷)𝑟)) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3124, 25, 30syl2anc 584 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑟 ∈ ℝ+) → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
32313expia 1121 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑟 ∈ ℝ+ → ((𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁))))
3332rexlimdv 3132 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3433adantr 480 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁 → ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)))
3521, 34impbid 212 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑦𝐽 (𝑃𝑦𝑦𝑁) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))
3635pm5.32da 579 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → ((𝑁𝑋 ∧ ∃𝑦𝐽 (𝑃𝑦𝑦𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
379, 12, 363bitr2d 307 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3911  {csn 4585   cuni 4867  cfv 6499  (class class class)co 7369  *cxr 11183  +crp 12927  ∞Metcxmet 21281  ballcbl 21283  MetOpencmopn 21286  Topctop 22813  neicnei 23017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-topgen 17382  df-psmet 21288  df-xmet 21289  df-bl 21291  df-mopn 21292  df-top 22814  df-topon 22831  df-bases 22866  df-nei 23018
This theorem is referenced by:  reperflem  24740  islpcn  45630
  Copyright terms: Public domain W3C validator