Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr5 Structured version   Visualization version   GIF version

Theorem cvlsupr5 38211
Description: Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr5.a 𝐴 = (Atomsβ€˜πΎ)
cvlsupr5.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
cvlsupr5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑅 β‰  𝑃)

Proof of Theorem cvlsupr5
StepHypRef Expression
1 cvlsupr5.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
2 eqid 2732 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
3 cvlsupr5.j . . . . . 6 ∨ = (joinβ€˜πΎ)
41, 2, 3cvlsupr2 38208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅(leβ€˜πΎ)(𝑃 ∨ 𝑄))))
5 simp1 1136 . . . . 5 ((𝑅 β‰  𝑃 ∧ 𝑅 β‰  𝑄 ∧ 𝑅(leβ€˜πΎ)(𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑃)
64, 5syl6bi 252 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) β†’ 𝑅 β‰  𝑃))
763exp 1119 . . 3 (𝐾 ∈ CvLat β†’ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑃 β‰  𝑄 β†’ ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) β†’ 𝑅 β‰  𝑃))))
87imp4a 423 . 2 (𝐾 ∈ CvLat β†’ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ ((𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) β†’ 𝑅 β‰  𝑃)))
983imp 1111 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) β†’ 𝑅 β‰  𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  Atomscatm 38128  CvLatclc 38130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187
This theorem is referenced by:  4atexlemswapqr  38929  4atexlemntlpq  38934  cdleme21b  39192
  Copyright terms: Public domain W3C validator