Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr5 | Structured version Visualization version GIF version |
Description: Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.) |
Ref | Expression |
---|---|
cvlsupr5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cvlsupr5.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
cvlsupr5 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlsupr5.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | eqid 2759 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | cvlsupr5.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | cvlsupr2 36912 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅(le‘𝐾)(𝑃 ∨ 𝑄)))) |
5 | simp1 1134 | . . . . 5 ⊢ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅(le‘𝐾)(𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) | |
6 | 4, 5 | syl6bi 256 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) → 𝑅 ≠ 𝑃)) |
7 | 6 | 3exp 1117 | . . 3 ⊢ (𝐾 ∈ CvLat → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) → 𝑅 ≠ 𝑃)))) |
8 | 7 | imp4a 427 | . 2 ⊢ (𝐾 ∈ CvLat → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ≠ 𝑃))) |
9 | 8 | 3imp 1109 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 lecple 16623 joincjn 17613 Atomscatm 36832 CvLatclc 36834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-lat 17715 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 |
This theorem is referenced by: 4atexlemswapqr 37632 4atexlemntlpq 37637 cdleme21b 37895 |
Copyright terms: Public domain | W3C validator |