| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlsupr6 | Structured version Visualization version GIF version | ||
| Description: Consequence of superposition condition (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅). (Contributed by NM, 9-Nov-2012.) |
| Ref | Expression |
|---|---|
| cvlsupr5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cvlsupr5.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| cvlsupr6 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvlsupr5.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | cvlsupr5.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 4 | 1, 2, 3 | cvlsupr2 39515 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) ↔ (𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅(le‘𝐾)(𝑃 ∨ 𝑄)))) |
| 5 | simp2 1137 | . . . . 5 ⊢ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≠ 𝑄 ∧ 𝑅(le‘𝐾)(𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑄) | |
| 6 | 4, 5 | biimtrdi 253 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) → 𝑅 ≠ 𝑄)) |
| 7 | 6 | 3exp 1119 | . . 3 ⊢ (𝐾 ∈ CvLat → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑃 ≠ 𝑄 → ((𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅) → 𝑅 ≠ 𝑄)))) |
| 8 | 7 | imp4a 422 | . 2 ⊢ (𝐾 ∈ CvLat → ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) → 𝑅 ≠ 𝑄))) |
| 9 | 8 | 3imp 1110 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ≠ 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 lecple 17175 joincjn 18225 Atomscatm 39435 CvLatclc 39437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-lat 18346 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 |
| This theorem is referenced by: 4atexlemnclw 40242 4atexlemcnd 40244 cdleme21a 40497 |
| Copyright terms: Public domain | W3C validator |