MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssssr Structured version   Visualization version   GIF version

Theorem lssssr 20564
Description: Conclude subspace ordering from nonzero vector membership. (ssrdv 3989 analog.) (Contributed by NM, 17-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lssssr.o 0 = (0g𝑊)
lssssr.s 𝑆 = (LSubSp‘𝑊)
lssssr.w (𝜑𝑊 ∈ LMod)
lssssr.t (𝜑𝑇𝑉)
lssssr.u (𝜑𝑈𝑆)
lssssr.1 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥𝑇𝑥𝑈))
Assertion
Ref Expression
lssssr (𝜑𝑇𝑈)
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem lssssr
StepHypRef Expression
1 simpr 486 . . . . 5 ((𝜑𝑥 = 0 ) → 𝑥 = 0 )
2 lssssr.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
3 lssssr.u . . . . . . 7 (𝜑𝑈𝑆)
4 lssssr.o . . . . . . . 8 0 = (0g𝑊)
5 lssssr.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
64, 5lss0cl 20557 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)
72, 3, 6syl2anc 585 . . . . . 6 (𝜑0𝑈)
87adantr 482 . . . . 5 ((𝜑𝑥 = 0 ) → 0𝑈)
91, 8eqeltrd 2834 . . . 4 ((𝜑𝑥 = 0 ) → 𝑥𝑈)
109a1d 25 . . 3 ((𝜑𝑥 = 0 ) → (𝑥𝑇𝑥𝑈))
11 lssssr.t . . . . . . 7 (𝜑𝑇𝑉)
1211sseld 3982 . . . . . 6 (𝜑 → (𝑥𝑇𝑥𝑉))
1312ancrd 553 . . . . 5 (𝜑 → (𝑥𝑇 → (𝑥𝑉𝑥𝑇)))
1413adantr 482 . . . 4 ((𝜑𝑥0 ) → (𝑥𝑇 → (𝑥𝑉𝑥𝑇)))
15 eldifsn 4791 . . . . . . . 8 (𝑥 ∈ (𝑉 ∖ { 0 }) ↔ (𝑥𝑉𝑥0 ))
16 lssssr.1 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥𝑇𝑥𝑈))
1715, 16sylan2br 596 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑥𝑇𝑥𝑈))
1817exp32 422 . . . . . 6 (𝜑 → (𝑥𝑉 → (𝑥0 → (𝑥𝑇𝑥𝑈))))
1918com23 86 . . . . 5 (𝜑 → (𝑥0 → (𝑥𝑉 → (𝑥𝑇𝑥𝑈))))
2019imp4b 423 . . . 4 ((𝜑𝑥0 ) → ((𝑥𝑉𝑥𝑇) → 𝑥𝑈))
2114, 20syld 47 . . 3 ((𝜑𝑥0 ) → (𝑥𝑇𝑥𝑈))
2210, 21pm2.61dane 3030 . 2 (𝜑 → (𝑥𝑇𝑥𝑈))
2322ssrdv 3989 1 (𝜑𝑇𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  cdif 3946  wss 3949  {csn 4629  cfv 6544  0gc0g 17385  LModclmod 20471  LSubSpclss 20542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mgp 19988  df-ur 20005  df-ring 20058  df-lmod 20473  df-lss 20543
This theorem is referenced by:  dihjat1lem  40299
  Copyright terms: Public domain W3C validator