Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssssr Structured version   Visualization version   GIF version

Theorem lssssr 19721
 Description: Conclude subspace ordering from nonzero vector membership. (ssrdv 3924 analog.) (Contributed by NM, 17-Aug-2014.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
lssssr.o 0 = (0g𝑊)
lssssr.s 𝑆 = (LSubSp‘𝑊)
lssssr.w (𝜑𝑊 ∈ LMod)
lssssr.t (𝜑𝑇𝑉)
lssssr.u (𝜑𝑈𝑆)
lssssr.1 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥𝑇𝑥𝑈))
Assertion
Ref Expression
lssssr (𝜑𝑇𝑈)
Distinct variable groups:   𝑥,𝑇   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)   0 (𝑥)

Proof of Theorem lssssr
StepHypRef Expression
1 simpr 488 . . . . 5 ((𝜑𝑥 = 0 ) → 𝑥 = 0 )
2 lssssr.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
3 lssssr.u . . . . . . 7 (𝜑𝑈𝑆)
4 lssssr.o . . . . . . . 8 0 = (0g𝑊)
5 lssssr.s . . . . . . . 8 𝑆 = (LSubSp‘𝑊)
64, 5lss0cl 19714 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 0𝑈)
72, 3, 6syl2anc 587 . . . . . 6 (𝜑0𝑈)
87adantr 484 . . . . 5 ((𝜑𝑥 = 0 ) → 0𝑈)
91, 8eqeltrd 2893 . . . 4 ((𝜑𝑥 = 0 ) → 𝑥𝑈)
109a1d 25 . . 3 ((𝜑𝑥 = 0 ) → (𝑥𝑇𝑥𝑈))
11 lssssr.t . . . . . . 7 (𝜑𝑇𝑉)
1211sseld 3917 . . . . . 6 (𝜑 → (𝑥𝑇𝑥𝑉))
1312ancrd 555 . . . . 5 (𝜑 → (𝑥𝑇 → (𝑥𝑉𝑥𝑇)))
1413adantr 484 . . . 4 ((𝜑𝑥0 ) → (𝑥𝑇 → (𝑥𝑉𝑥𝑇)))
15 eldifsn 4683 . . . . . . . 8 (𝑥 ∈ (𝑉 ∖ { 0 }) ↔ (𝑥𝑉𝑥0 ))
16 lssssr.1 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑉 ∖ { 0 })) → (𝑥𝑇𝑥𝑈))
1715, 16sylan2br 597 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑥0 )) → (𝑥𝑇𝑥𝑈))
1817exp32 424 . . . . . 6 (𝜑 → (𝑥𝑉 → (𝑥0 → (𝑥𝑇𝑥𝑈))))
1918com23 86 . . . . 5 (𝜑 → (𝑥0 → (𝑥𝑉 → (𝑥𝑇𝑥𝑈))))
2019imp4b 425 . . . 4 ((𝜑𝑥0 ) → ((𝑥𝑉𝑥𝑇) → 𝑥𝑈))
2114, 20syld 47 . . 3 ((𝜑𝑥0 ) → (𝑥𝑇𝑥𝑈))
2210, 21pm2.61dane 3077 . 2 (𝜑 → (𝑥𝑇𝑥𝑈))
2322ssrdv 3924 1 (𝜑𝑇𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990   ∖ cdif 3881   ⊆ wss 3884  {csn 4528  ‘cfv 6328  0gc0g 16708  LModclmod 19630  LSubSpclss 19699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mgp 19236  df-ur 19248  df-ring 19295  df-lmod 19632  df-lss 19700 This theorem is referenced by:  dihjat1lem  38717
 Copyright terms: Public domain W3C validator