HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem6 Structured version   Visualization version   GIF version

Theorem mdsymlem6 29792
Description: Lemma for mdsymi 29795. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem6 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → 𝐵 𝑀* 𝐴)
Distinct variable groups:   𝑟,𝑞,𝐶   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem6
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mdsymlem1.1 . . . . . . . . . . . . 13 𝐴C
2 mdsymlem1.2 . . . . . . . . . . . . 13 𝐵C
31, 2chjcomi 28852 . . . . . . . . . . . 12 (𝐴 𝐵) = (𝐵 𝐴)
43sseq2i 3826 . . . . . . . . . . 11 (𝑝 ⊆ (𝐴 𝐵) ↔ 𝑝 ⊆ (𝐵 𝐴))
54anbi2i 617 . . . . . . . . . 10 ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) ↔ (𝑝𝑐𝑝 ⊆ (𝐵 𝐴)))
6 ssin 4030 . . . . . . . . . 10 ((𝑝𝑐𝑝 ⊆ (𝐵 𝐴)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)))
75, 6bitri 267 . . . . . . . . 9 ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)))
8 mdsymlem1.3 . . . . . . . . . . . . . . . 16 𝐶 = (𝐴 𝑝)
91, 2, 8mdsymlem5 29791 . . . . . . . . . . . . . . 15 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10 sseq1 3822 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑝 → (𝑞𝐴𝑝𝐴))
11 chincl 28883 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
122, 11mpan2 683 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐C → (𝑐𝐵) ∈ C )
13 chub2 28892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C ∧ (𝑐𝐵) ∈ C ) → 𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴))
141, 12, 13sylancr 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐C𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴))
15 sstr2 3805 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝𝐴 → (𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1614, 15syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝𝐴 → (𝑐C𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1710, 16syl6bi 245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑝 → (𝑞𝐴 → (𝑐C𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
1817impd 399 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → ((𝑞𝐴𝑐C ) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1918a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑝𝑐 → (𝑞 = 𝑝 → ((𝑞𝐴𝑐C ) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2019com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑞𝐴𝑐C ) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2120adantrr 709 . . . . . . . . . . . . . . . . . . 19 ((𝑞𝐴 ∧ (𝑐C𝐴𝑐)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2221ad2ant2r 754 . . . . . . . . . . . . . . . . . 18 (((𝑞𝐴𝑟𝐵) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2322adantll 706 . . . . . . . . . . . . . . . . 17 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2423com12 32 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑝 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2524expd 405 . . . . . . . . . . . . . . 15 (𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
269, 25pm2.61d2 174 . . . . . . . . . . . . . 14 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
2726rexlimivv 3217 . . . . . . . . . . . . 13 (∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2827com12 32 . . . . . . . . . . . 12 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2928imim2d 57 . . . . . . . . . . 11 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝 ⊆ (𝐴 𝐵) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
3029com34 91 . . . . . . . . . 10 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝𝑐 → (𝑝 ⊆ (𝐴 𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
3130imp4b 413 . . . . . . . . 9 ((((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))) → ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
327, 31syl5bir 235 . . . . . . . 8 ((((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
3332ex 402 . . . . . . 7 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
3433ralimdva 3143 . . . . . 6 ((𝑐C𝐴𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
352, 1chjcli 28841 . . . . . . . . 9 (𝐵 𝐴) ∈ C
36 chincl 28883 . . . . . . . . 9 ((𝑐C ∧ (𝐵 𝐴) ∈ C ) → (𝑐 ∩ (𝐵 𝐴)) ∈ C )
3735, 36mpan2 683 . . . . . . . 8 (𝑐C → (𝑐 ∩ (𝐵 𝐴)) ∈ C )
38 chjcl 28741 . . . . . . . . 9 (((𝑐𝐵) ∈ C𝐴C ) → ((𝑐𝐵) ∨ 𝐴) ∈ C )
3912, 1, 38sylancl 581 . . . . . . . 8 (𝑐C → ((𝑐𝐵) ∨ 𝐴) ∈ C )
40 chrelat3 29755 . . . . . . . 8 (((𝑐 ∩ (𝐵 𝐴)) ∈ C ∧ ((𝑐𝐵) ∨ 𝐴) ∈ C ) → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4137, 39, 40syl2anc 580 . . . . . . 7 (𝑐C → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4241adantr 473 . . . . . 6 ((𝑐C𝐴𝑐) → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4334, 42sylibrd 251 . . . . 5 ((𝑐C𝐴𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
4443ex 402 . . . 4 (𝑐C → (𝐴𝑐 → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
4544com3r 87 . . 3 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐C → (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
4645ralrimiv 3146 . 2 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
47 dmdbr2 29687 . . 3 ((𝐵C𝐴C ) → (𝐵 𝑀* 𝐴 ↔ ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
482, 1, 47mp2an 684 . 2 (𝐵 𝑀* 𝐴 ↔ ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
4946, 48sylibr 226 1 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → 𝐵 𝑀* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090  cin 3768  wss 3769   class class class wbr 4843  (class class class)co 6878   C cch 28311   chj 28315  HAtomscat 28347   𝑀* cdmd 28349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cc 9545  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304  ax-hilex 28381  ax-hfvadd 28382  ax-hvcom 28383  ax-hvass 28384  ax-hv0cl 28385  ax-hvaddid 28386  ax-hfvmul 28387  ax-hvmulid 28388  ax-hvmulass 28389  ax-hvdistr1 28390  ax-hvdistr2 28391  ax-hvmul0 28392  ax-hfi 28461  ax-his1 28464  ax-his2 28465  ax-his3 28466  ax-his4 28467  ax-hcompl 28584
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-of 7131  df-om 7300  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-omul 7804  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-fi 8559  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-acn 9054  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-ioo 12428  df-ico 12430  df-icc 12431  df-fz 12581  df-fzo 12721  df-fl 12848  df-seq 13056  df-exp 13115  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-rlim 14561  df-sum 14758  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-starv 16282  df-sca 16283  df-vsca 16284  df-ip 16285  df-tset 16286  df-ple 16287  df-ds 16289  df-unif 16290  df-hom 16291  df-cco 16292  df-rest 16398  df-topn 16399  df-0g 16417  df-gsum 16418  df-topgen 16419  df-pt 16420  df-prds 16423  df-xrs 16477  df-qtop 16482  df-imas 16483  df-xps 16485  df-mre 16561  df-mrc 16562  df-acs 16564  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-mulg 17857  df-cntz 18062  df-cmn 18510  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-fbas 20065  df-fg 20066  df-cnfld 20069  df-top 21027  df-topon 21044  df-topsp 21066  df-bases 21079  df-cld 21152  df-ntr 21153  df-cls 21154  df-nei 21231  df-cn 21360  df-cnp 21361  df-lm 21362  df-haus 21448  df-tx 21694  df-hmeo 21887  df-fil 21978  df-fm 22070  df-flim 22071  df-flf 22072  df-xms 22453  df-ms 22454  df-tms 22455  df-cfil 23381  df-cau 23382  df-cmet 23383  df-grpo 27873  df-gid 27874  df-ginv 27875  df-gdiv 27876  df-ablo 27925  df-vc 27939  df-nv 27972  df-va 27975  df-ba 27976  df-sm 27977  df-0v 27978  df-vs 27979  df-nmcv 27980  df-ims 27981  df-dip 28081  df-ssp 28102  df-ph 28193  df-cbn 28244  df-hnorm 28350  df-hba 28351  df-hvsub 28353  df-hlim 28354  df-hcau 28355  df-sh 28589  df-ch 28603  df-oc 28634  df-ch0 28635  df-shs 28692  df-span 28693  df-chj 28694  df-chsup 28695  df-pjh 28779  df-cv 29663  df-dmd 29665  df-at 29722
This theorem is referenced by:  mdsymlem7  29793
  Copyright terms: Public domain W3C validator