Step | Hyp | Ref
| Expression |
1 | | mdsymlem1.1 |
. . . . . . . . . . . . 13
⊢ 𝐴 ∈
Cℋ |
2 | | mdsymlem1.2 |
. . . . . . . . . . . . 13
⊢ 𝐵 ∈
Cℋ |
3 | 1, 2 | chjcomi 29830 |
. . . . . . . . . . . 12
⊢ (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴) |
4 | 3 | sseq2i 3950 |
. . . . . . . . . . 11
⊢ (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) ↔ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴)) |
5 | 4 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((𝑝 ⊆ 𝑐 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ (𝑝 ⊆ 𝑐 ∧ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴))) |
6 | | ssin 4164 |
. . . . . . . . . 10
⊢ ((𝑝 ⊆ 𝑐 ∧ 𝑝 ⊆ (𝐵 ∨ℋ 𝐴)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴))) |
7 | 5, 6 | bitri 274 |
. . . . . . . . 9
⊢ ((𝑝 ⊆ 𝑐 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴))) |
8 | | mdsymlem1.3 |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) |
9 | 1, 2, 8 | mdsymlem5 30769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬
𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) |
10 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑞 = 𝑝 → (𝑞 ⊆ 𝐴 ↔ 𝑝 ⊆ 𝐴)) |
11 | | chincl 29861 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑐 ∈
Cℋ ∧ 𝐵 ∈ Cℋ )
→ (𝑐 ∩ 𝐵) ∈
Cℋ ) |
12 | 2, 11 | mpan2 688 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐 ∈
Cℋ → (𝑐 ∩ 𝐵) ∈ Cℋ
) |
13 | | chub2 29870 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈
Cℋ ∧ (𝑐 ∩ 𝐵) ∈ Cℋ )
→ 𝐴 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
14 | 1, 12, 13 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐 ∈
Cℋ → 𝐴 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)) |
15 | | sstr2 3928 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑝 ⊆ 𝐴 → (𝐴 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
16 | 14, 15 | syl5 34 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑝 ⊆ 𝐴 → (𝑐 ∈ Cℋ
→ 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
17 | 10, 16 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑞 = 𝑝 → (𝑞 ⊆ 𝐴 → (𝑐 ∈ Cℋ
→ 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
18 | 17 | impd 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑞 = 𝑝 → ((𝑞 ⊆ 𝐴 ∧ 𝑐 ∈ Cℋ )
→ 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
19 | 18 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ⊆ 𝑐 → (𝑞 = 𝑝 → ((𝑞 ⊆ 𝐴 ∧ 𝑐 ∈ Cℋ )
→ 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
20 | 19 | com13 88 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑞 ⊆ 𝐴 ∧ 𝑐 ∈ Cℋ )
→ (𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
21 | 20 | adantrr 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑞 ⊆ 𝐴 ∧ (𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐)) → (𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
22 | 21 | ad2ant2r 744 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵) ∧ ((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
23 | 22 | adantll 711 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
24 | 23 | com12 32 |
. . . . . . . . . . . . . . . 16
⊢ (𝑞 = 𝑝 → (((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) ∧ ((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
25 | 24 | expd 416 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
26 | 9, 25 | pm2.61d2 181 |
. . . . . . . . . . . . . 14
⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
27 | 26 | rexlimivv 3221 |
. . . . . . . . . . . . 13
⊢
(∃𝑞 ∈
HAtoms ∃𝑟 ∈
HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ
∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
28 | 27 | com12 32 |
. . . . . . . . . . . 12
⊢ (((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
29 | 28 | imim2d 57 |
. . . . . . . . . . 11
⊢ (((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
30 | 29 | com34 91 |
. . . . . . . . . 10
⊢ (((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑝 ⊆ 𝑐 → (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))))) |
31 | 30 | imp4b 422 |
. . . . . . . . 9
⊢ ((((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) → ((𝑝 ⊆ 𝑐 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
32 | 7, 31 | syl5bir 242 |
. . . . . . . 8
⊢ ((((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
33 | 32 | ex 413 |
. . . . . . 7
⊢ (((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
34 | 33 | ralimdva 3108 |
. . . . . 6
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
35 | 2, 1 | chjcli 29819 |
. . . . . . . . 9
⊢ (𝐵 ∨ℋ 𝐴) ∈
Cℋ |
36 | | chincl 29861 |
. . . . . . . . 9
⊢ ((𝑐 ∈
Cℋ ∧ (𝐵 ∨ℋ 𝐴) ∈ Cℋ )
→ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ∈
Cℋ ) |
37 | 35, 36 | mpan2 688 |
. . . . . . . 8
⊢ (𝑐 ∈
Cℋ → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ
) |
38 | | chjcl 29719 |
. . . . . . . . 9
⊢ (((𝑐 ∩ 𝐵) ∈ Cℋ
∧ 𝐴 ∈
Cℋ ) → ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ∈ Cℋ
) |
39 | 12, 1, 38 | sylancl 586 |
. . . . . . . 8
⊢ (𝑐 ∈
Cℋ → ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ∈ Cℋ
) |
40 | | chrelat3 30733 |
. . . . . . . 8
⊢ (((𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ∈ Cℋ
∧ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ∈
Cℋ ) → ((𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
41 | 37, 39, 40 | syl2anc 584 |
. . . . . . 7
⊢ (𝑐 ∈
Cℋ → ((𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
42 | 41 | adantr 481 |
. . . . . 6
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) → ((𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
43 | 34, 42 | sylibrd 258 |
. . . . 5
⊢ ((𝑐 ∈
Cℋ ∧ 𝐴 ⊆ 𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
44 | 43 | ex 413 |
. . . 4
⊢ (𝑐 ∈
Cℋ → (𝐴 ⊆ 𝑐 → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
45 | 44 | com3r 87 |
. . 3
⊢
(∀𝑝 ∈
HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → (𝑐 ∈ Cℋ
→ (𝐴 ⊆ 𝑐 → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
46 | 45 | ralrimiv 3102 |
. 2
⊢
(∀𝑝 ∈
HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → ∀𝑐 ∈ Cℋ
(𝐴 ⊆ 𝑐 → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
47 | | dmdbr2 30665 |
. . 3
⊢ ((𝐵 ∈
Cℋ ∧ 𝐴 ∈ Cℋ )
→ (𝐵
𝑀ℋ* 𝐴 ↔ ∀𝑐 ∈ Cℋ
(𝐴 ⊆ 𝑐 → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))) |
48 | 2, 1, 47 | mp2an 689 |
. 2
⊢ (𝐵
𝑀ℋ* 𝐴 ↔ ∀𝑐 ∈ Cℋ
(𝐴 ⊆ 𝑐 → (𝑐 ∩ (𝐵 ∨ℋ 𝐴)) ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴))) |
49 | 46, 48 | sylibr 233 |
1
⊢
(∀𝑝 ∈
HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → 𝐵 𝑀ℋ*
𝐴) |