HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem6 Structured version   Visualization version   GIF version

Theorem mdsymlem6 31925
Description: Lemma for mdsymi 31928. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem6 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → 𝐵 𝑀* 𝐴)
Distinct variable groups:   𝑟,𝑞,𝐶   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem6
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mdsymlem1.1 . . . . . . . . . . . . 13 𝐴C
2 mdsymlem1.2 . . . . . . . . . . . . 13 𝐵C
31, 2chjcomi 30985 . . . . . . . . . . . 12 (𝐴 𝐵) = (𝐵 𝐴)
43sseq2i 4012 . . . . . . . . . . 11 (𝑝 ⊆ (𝐴 𝐵) ↔ 𝑝 ⊆ (𝐵 𝐴))
54anbi2i 622 . . . . . . . . . 10 ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) ↔ (𝑝𝑐𝑝 ⊆ (𝐵 𝐴)))
6 ssin 4231 . . . . . . . . . 10 ((𝑝𝑐𝑝 ⊆ (𝐵 𝐴)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)))
75, 6bitri 274 . . . . . . . . 9 ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) ↔ 𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)))
8 mdsymlem1.3 . . . . . . . . . . . . . . . 16 𝐶 = (𝐴 𝑝)
91, 2, 8mdsymlem5 31924 . . . . . . . . . . . . . . 15 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))))
10 sseq1 4008 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞 = 𝑝 → (𝑞𝐴𝑝𝐴))
11 chincl 31016 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑐C𝐵C ) → (𝑐𝐵) ∈ C )
122, 11mpan2 688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑐C → (𝑐𝐵) ∈ C )
13 chub2 31025 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴C ∧ (𝑐𝐵) ∈ C ) → 𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴))
141, 12, 13sylancr 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑐C𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴))
15 sstr2 3990 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝𝐴 → (𝐴 ⊆ ((𝑐𝐵) ∨ 𝐴) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1614, 15syl5 34 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝𝐴 → (𝑐C𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1710, 16syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞 = 𝑝 → (𝑞𝐴 → (𝑐C𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
1817impd 410 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 = 𝑝 → ((𝑞𝐴𝑐C ) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
1918a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑝𝑐 → (𝑞 = 𝑝 → ((𝑞𝐴𝑐C ) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2019com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑞𝐴𝑐C ) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2120adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝑞𝐴 ∧ (𝑐C𝐴𝑐)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2221ad2ant2r 744 . . . . . . . . . . . . . . . . . 18 (((𝑞𝐴𝑟𝐵) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2322adantll 711 . . . . . . . . . . . . . . . . 17 (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑞 = 𝑝 → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2423com12 32 . . . . . . . . . . . . . . . 16 (𝑞 = 𝑝 → (((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) ∧ ((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2524expd 415 . . . . . . . . . . . . . . 15 (𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
269, 25pm2.61d2 181 . . . . . . . . . . . . . 14 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
2726rexlimivv 3198 . . . . . . . . . . . . 13 (∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2827com12 32 . . . . . . . . . . . 12 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → (∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
2928imim2d 57 . . . . . . . . . . 11 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝 ⊆ (𝐴 𝐵) → (𝑝𝑐𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
3029com34 91 . . . . . . . . . 10 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝𝑐 → (𝑝 ⊆ (𝐴 𝐵) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))))
3130imp4b 421 . . . . . . . . 9 ((((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))) → ((𝑝𝑐𝑝 ⊆ (𝐴 𝐵)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
327, 31biimtrrid 242 . . . . . . . 8 ((((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) ∧ (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴)))
3332ex 412 . . . . . . 7 (((𝑐C𝐴𝑐) ∧ 𝑝 ∈ HAtoms) → ((𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
3433ralimdva 3166 . . . . . 6 ((𝑐C𝐴𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
352, 1chjcli 30974 . . . . . . . . 9 (𝐵 𝐴) ∈ C
36 chincl 31016 . . . . . . . . 9 ((𝑐C ∧ (𝐵 𝐴) ∈ C ) → (𝑐 ∩ (𝐵 𝐴)) ∈ C )
3735, 36mpan2 688 . . . . . . . 8 (𝑐C → (𝑐 ∩ (𝐵 𝐴)) ∈ C )
38 chjcl 30874 . . . . . . . . 9 (((𝑐𝐵) ∈ C𝐴C ) → ((𝑐𝐵) ∨ 𝐴) ∈ C )
3912, 1, 38sylancl 585 . . . . . . . 8 (𝑐C → ((𝑐𝐵) ∨ 𝐴) ∈ C )
40 chrelat3 31888 . . . . . . . 8 (((𝑐 ∩ (𝐵 𝐴)) ∈ C ∧ ((𝑐𝐵) ∨ 𝐴) ∈ C ) → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4137, 39, 40syl2anc 583 . . . . . . 7 (𝑐C → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4241adantr 480 . . . . . 6 ((𝑐C𝐴𝑐) → ((𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴) ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝑐 ∩ (𝐵 𝐴)) → 𝑝 ⊆ ((𝑐𝐵) ∨ 𝐴))))
4334, 42sylibrd 258 . . . . 5 ((𝑐C𝐴𝑐) → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
4443ex 412 . . . 4 (𝑐C → (𝐴𝑐 → (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
4544com3r 87 . . 3 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → (𝑐C → (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
4645ralrimiv 3144 . 2 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
47 dmdbr2 31820 . . 3 ((𝐵C𝐴C ) → (𝐵 𝑀* 𝐴 ↔ ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴))))
482, 1, 47mp2an 689 . 2 (𝐵 𝑀* 𝐴 ↔ ∀𝑐C (𝐴𝑐 → (𝑐 ∩ (𝐵 𝐴)) ⊆ ((𝑐𝐵) ∨ 𝐴)))
4946, 48sylibr 233 1 (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))) → 𝐵 𝑀* 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069  cin 3948  wss 3949   class class class wbr 5149  (class class class)co 7412   C cch 30446   chj 30450  HAtomscat 30482   𝑀* cdmd 30484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cc 10433  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193  ax-hilex 30516  ax-hfvadd 30517  ax-hvcom 30518  ax-hvass 30519  ax-hv0cl 30520  ax-hvaddid 30521  ax-hfvmul 30522  ax-hvmulid 30523  ax-hvmulass 30524  ax-hvdistr1 30525  ax-hvdistr2 30526  ax-hvmul0 30527  ax-hfi 30596  ax-his1 30599  ax-his2 30600  ax-his3 30601  ax-his4 30602  ax-hcompl 30719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-omul 8474  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-card 9937  df-acn 9940  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-rlim 15438  df-sum 15638  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-cn 22952  df-cnp 22953  df-lm 22954  df-haus 23040  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cfil 25004  df-cau 25005  df-cmet 25006  df-grpo 30010  df-gid 30011  df-ginv 30012  df-gdiv 30013  df-ablo 30062  df-vc 30076  df-nv 30109  df-va 30112  df-ba 30113  df-sm 30114  df-0v 30115  df-vs 30116  df-nmcv 30117  df-ims 30118  df-dip 30218  df-ssp 30239  df-ph 30330  df-cbn 30380  df-hnorm 30485  df-hba 30486  df-hvsub 30488  df-hlim 30489  df-hcau 30490  df-sh 30724  df-ch 30738  df-oc 30769  df-ch0 30770  df-shs 30825  df-span 30826  df-chj 30827  df-chsup 30828  df-pjh 30912  df-cv 31796  df-dmd 31798  df-at 31855
This theorem is referenced by:  mdsymlem7  31926
  Copyright terms: Public domain W3C validator