Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | infexd 9242 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 Or wor 5502 infcinf 9200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-po 5503 df-so 5504 df-cnv 5597 df-sup 9201 df-inf 9202 |
This theorem is referenced by: limsupval 15183 lcmval 16297 odzval 16492 ramval 16709 imasdsfn 17225 imasdsval 17226 odval 19142 odf 19145 gexval 19183 nmoval 23879 metdsval 24010 ovolval 24637 ovolf 24646 elqaalem1 25479 elqaalem3 25481 ballotlemi 32467 pellfundval 40702 dgraaval 40969 dgraaf 40972 liminfgval 43303 liminfval2 43309 ovnval2 44083 |
Copyright terms: Public domain | W3C validator |