| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9368 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 Or wor 5523 infcinf 9325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-po 5524 df-so 5525 df-cnv 5624 df-sup 9326 df-inf 9327 |
| This theorem is referenced by: limsupval 15381 lcmval 16503 odzval 16703 ramval 16920 imasdsfn 17418 imasdsval 17419 odval 19447 odf 19450 gexval 19491 nmoval 24631 metdsval 24764 ovolval 25402 ovolf 25411 elqaalem1 26255 elqaalem3 26257 ballotlemi 34512 pellfundval 42919 dgraaval 43183 dgraaf 43186 liminfgval 45806 liminfval2 45812 ovnval2 46589 finfdm2 46891 |
| Copyright terms: Public domain | W3C validator |