MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infex Structured version   Visualization version   GIF version

Theorem infex 9252
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.)
Hypothesis
Ref Expression
infex.1 𝑅 Or 𝐴
Assertion
Ref Expression
infex inf(𝐵, 𝐴, 𝑅) ∈ V

Proof of Theorem infex
StepHypRef Expression
1 infex.1 . 2 𝑅 Or 𝐴
2 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
32infexd 9242 . 2 (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V)
41, 3ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3432   Or wor 5502  infcinf 9200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-cnv 5597  df-sup 9201  df-inf 9202
This theorem is referenced by:  limsupval  15183  lcmval  16297  odzval  16492  ramval  16709  imasdsfn  17225  imasdsval  17226  odval  19142  odf  19145  gexval  19183  nmoval  23879  metdsval  24010  ovolval  24637  ovolf  24646  elqaalem1  25479  elqaalem3  25481  ballotlemi  32467  pellfundval  40702  dgraaval  40969  dgraaf  40972  liminfgval  43303  liminfval2  43309  ovnval2  44083
  Copyright terms: Public domain W3C validator