MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infex Structured version   Visualization version   GIF version

Theorem infex 8941
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.)
Hypothesis
Ref Expression
infex.1 𝑅 Or 𝐴
Assertion
Ref Expression
infex inf(𝐵, 𝐴, 𝑅) ∈ V

Proof of Theorem infex
StepHypRef Expression
1 infex.1 . 2 𝑅 Or 𝐴
2 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
32infexd 8931 . 2 (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V)
41, 3ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3441   Or wor 5437  infcinf 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rmo 3114  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-po 5438  df-so 5439  df-cnv 5527  df-sup 8890  df-inf 8891
This theorem is referenced by:  limsupval  14823  lcmval  15926  odzval  16118  ramval  16334  imasdsfn  16779  imasdsval  16780  odval  18654  odf  18657  gexval  18695  nmoval  23321  metdsval  23452  ovolval  24077  ovolf  24086  elqaalem1  24915  elqaalem3  24917  ballotlemi  31868  pellfundval  39816  dgraaval  40083  dgraaf  40086  liminfgval  42399  liminfval2  42405  ovnval2  43179
  Copyright terms: Public domain W3C validator