| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9442 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 Or wor 5548 infcinf 9399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-po 5549 df-so 5550 df-cnv 5649 df-sup 9400 df-inf 9401 |
| This theorem is referenced by: limsupval 15447 lcmval 16569 odzval 16769 ramval 16986 imasdsfn 17484 imasdsval 17485 odval 19471 odf 19474 gexval 19515 nmoval 24610 metdsval 24743 ovolval 25381 ovolf 25390 elqaalem1 26234 elqaalem3 26236 ballotlemi 34499 pellfundval 42875 dgraaval 43140 dgraaf 43143 liminfgval 45767 liminfval2 45773 ovnval2 46550 finfdm2 46852 |
| Copyright terms: Public domain | W3C validator |