![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | infexd 8742 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 Vcvv 3415 Or wor 5325 infcinf 8700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-rmo 3096 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-po 5326 df-so 5327 df-cnv 5415 df-sup 8701 df-inf 8702 |
This theorem is referenced by: limsupval 14692 lcmval 15792 odzval 15984 ramval 16200 imasdsfn 16643 imasdsval 16644 odval 18424 odf 18427 gexval 18464 nmoval 23027 metdsval 23158 ovolval 23777 ovolf 23786 elqaalem1 24611 elqaalem3 24613 ballotlemi 31410 pellfundval 38879 dgraaval 39146 dgraaf 39149 liminfgval 41480 liminfval2 41486 ovnval2 42264 |
Copyright terms: Public domain | W3C validator |