| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9375 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 Or wor 5526 infcinf 9332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-po 5527 df-so 5528 df-cnv 5627 df-sup 9333 df-inf 9334 |
| This theorem is referenced by: limsupval 15383 lcmval 16505 odzval 16705 ramval 16922 imasdsfn 17420 imasdsval 17421 odval 19448 odf 19451 gexval 19492 nmoval 24631 metdsval 24764 ovolval 25402 ovolf 25411 elqaalem1 26255 elqaalem3 26257 ballotlemi 34535 pellfundval 42998 dgraaval 43262 dgraaf 43265 liminfgval 45885 liminfval2 45891 ovnval2 46668 finfdm2 46970 |
| Copyright terms: Public domain | W3C validator |