| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9393 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 Or wor 5530 infcinf 9350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-po 5531 df-so 5532 df-cnv 5631 df-sup 9351 df-inf 9352 |
| This theorem is referenced by: limsupval 15399 lcmval 16521 odzval 16721 ramval 16938 imasdsfn 17436 imasdsval 17437 odval 19431 odf 19434 gexval 19475 nmoval 24619 metdsval 24752 ovolval 25390 ovolf 25399 elqaalem1 26243 elqaalem3 26245 ballotlemi 34468 pellfundval 42853 dgraaval 43117 dgraaf 43120 liminfgval 45744 liminfval2 45750 ovnval2 46527 finfdm2 46829 |
| Copyright terms: Public domain | W3C validator |