MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infex Structured version   Visualization version   GIF version

Theorem infex 9446
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.)
Hypothesis
Ref Expression
infex.1 𝑅 Or 𝐴
Assertion
Ref Expression
infex inf(𝐵, 𝐴, 𝑅) ∈ V

Proof of Theorem infex
StepHypRef Expression
1 infex.1 . 2 𝑅 Or 𝐴
2 id 22 . . 3 (𝑅 Or 𝐴𝑅 Or 𝐴)
32infexd 9435 . 2 (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V)
41, 3ax-mp 5 1 inf(𝐵, 𝐴, 𝑅) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447   Or wor 5545  infcinf 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-po 5546  df-so 5547  df-cnv 5646  df-sup 9393  df-inf 9394
This theorem is referenced by:  limsupval  15440  lcmval  16562  odzval  16762  ramval  16979  imasdsfn  17477  imasdsval  17478  odval  19464  odf  19467  gexval  19508  nmoval  24603  metdsval  24736  ovolval  25374  ovolf  25383  elqaalem1  26227  elqaalem3  26229  ballotlemi  34492  pellfundval  42868  dgraaval  43133  dgraaf  43136  liminfgval  45760  liminfval2  45766  ovnval2  46543  finfdm2  46845
  Copyright terms: Public domain W3C validator