Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version |
Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infex.1 | ⊢ 𝑅 Or 𝐴 |
Ref | Expression |
---|---|
infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
3 | 2 | infexd 9172 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 Or wor 5493 infcinf 9130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-cnv 5588 df-sup 9131 df-inf 9132 |
This theorem is referenced by: limsupval 15111 lcmval 16225 odzval 16420 ramval 16637 imasdsfn 17142 imasdsval 17143 odval 19057 odf 19060 gexval 19098 nmoval 23785 metdsval 23916 ovolval 24542 ovolf 24551 elqaalem1 25384 elqaalem3 25386 ballotlemi 32367 pellfundval 40618 dgraaval 40885 dgraaf 40888 liminfgval 43193 liminfval2 43199 ovnval2 43973 |
Copyright terms: Public domain | W3C validator |