| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infex | Structured version Visualization version GIF version | ||
| Description: An infimum is a set. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infex.1 | ⊢ 𝑅 Or 𝐴 |
| Ref | Expression |
|---|---|
| infex | ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infex.1 | . 2 ⊢ 𝑅 Or 𝐴 | |
| 2 | id 22 | . . 3 ⊢ (𝑅 Or 𝐴 → 𝑅 Or 𝐴) | |
| 3 | 2 | infexd 9523 | . 2 ⊢ (𝑅 Or 𝐴 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ inf(𝐵, 𝐴, 𝑅) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3480 Or wor 5591 infcinf 9481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-po 5592 df-so 5593 df-cnv 5693 df-sup 9482 df-inf 9483 |
| This theorem is referenced by: limsupval 15510 lcmval 16629 odzval 16829 ramval 17046 imasdsfn 17559 imasdsval 17560 odval 19552 odf 19555 gexval 19596 nmoval 24736 metdsval 24869 ovolval 25508 ovolf 25517 elqaalem1 26361 elqaalem3 26363 ballotlemi 34503 pellfundval 42891 dgraaval 43156 dgraaf 43159 liminfgval 45777 liminfval2 45783 ovnval2 46560 finfdm2 46862 |
| Copyright terms: Public domain | W3C validator |