Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. . . 4
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π
:πβΆ(0[,]+β)) |
2 | | simp1 1134 |
. . . 4
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π β π) |
3 | 1, 2 | fexd 7230 |
. . 3
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π
β
V) |
4 | | omsval 33590 |
. . 3
β’ (π
β V β
(toOMeasβπ
) = (π β π« βͺ dom π
β¦ inf(ran (π₯ β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)), (0[,]+β), < ))) |
5 | 3, 4 | syl 17 |
. 2
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β (toOMeasβπ
) =
(π β π« βͺ dom π
β¦ inf(ran (π₯ β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)), (0[,]+β), < ))) |
6 | | simpr 483 |
. . . . . . . 8
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β π = π΄) |
7 | 6 | sseq1d 4012 |
. . . . . . 7
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β (π β βͺ π§ β π΄ β βͺ π§)) |
8 | 7 | anbi1d 628 |
. . . . . 6
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β ((π β βͺ π§ β§ π§ βΌ Ο) β (π΄ β βͺ π§ β§ π§ βΌ Ο))) |
9 | 8 | rabbidv 3438 |
. . . . 5
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} = {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)}) |
10 | 9 | mpteq1d 5242 |
. . . 4
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β (π₯ β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)) = (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦))) |
11 | 10 | rneqd 5936 |
. . 3
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β ran (π₯ β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)) = ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦))) |
12 | 11 | infeq1d 9474 |
. 2
β’ (((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β§ π = π΄) β inf(ran (π₯ β {π§ β π« dom π
β£ (π β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)), (0[,]+β), < ) = inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)), (0[,]+β), < )) |
13 | | simp3 1136 |
. . . 4
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π΄ β βͺ π) |
14 | | fdm 6725 |
. . . . . 6
β’ (π
:πβΆ(0[,]+β) β dom π
= π) |
15 | 14 | 3ad2ant2 1132 |
. . . . 5
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β dom π
= π) |
16 | 15 | unieqd 4921 |
. . . 4
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β βͺ dom π
= βͺ π) |
17 | 13, 16 | sseqtrrd 4022 |
. . 3
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π΄ β βͺ dom π
) |
18 | 2 | uniexd 7734 |
. . . . 5
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β βͺ π β V) |
19 | | ssexg 5322 |
. . . . 5
β’ ((π΄ β βͺ π
β§ βͺ π β V) β π΄ β V) |
20 | 13, 18, 19 | syl2anc 582 |
. . . 4
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π΄ β
V) |
21 | | elpwg 4604 |
. . . 4
β’ (π΄ β V β (π΄ β π« βͺ dom π
β π΄ β βͺ dom
π
)) |
22 | 20, 21 | syl 17 |
. . 3
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β (π΄ β π«
βͺ dom π
β π΄ β βͺ dom
π
)) |
23 | 17, 22 | mpbird 256 |
. 2
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β π΄ β π«
βͺ dom π
) |
24 | | xrltso 13124 |
. . . 4
β’ < Or
β* |
25 | | iccssxr 13411 |
. . . . 5
β’
(0[,]+β) β β* |
26 | | soss 5607 |
. . . . 5
β’
((0[,]+β) β β* β ( < Or
β* β < Or (0[,]+β))) |
27 | 25, 26 | ax-mp 5 |
. . . 4
β’ ( < Or
β* β < Or (0[,]+β)) |
28 | 24, 27 | mp1i 13 |
. . 3
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β < Or (0[,]+β)) |
29 | 28 | infexd 9480 |
. 2
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β inf(ran (π₯ β
{π§ β π« dom
π
β£ (π΄ β βͺ π§
β§ π§ βΌ Ο)}
β¦ Ξ£*π¦ β π₯(π
βπ¦)), (0[,]+β), < ) β
V) |
30 | 5, 12, 23, 29 | fvmptd 7004 |
1
β’ ((π β π β§ π
:πβΆ(0[,]+β) β§ π΄ β βͺ π)
β ((toOMeasβπ
)βπ΄) = inf(ran (π₯ β {π§ β π« dom π
β£ (π΄ β βͺ π§ β§ π§ βΌ Ο)} β¦
Ξ£*π¦ β
π₯(π
βπ¦)), (0[,]+β), < )) |