Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsfval Structured version   Visualization version   GIF version

Theorem omsfval 34299
Description: Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsfval ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑥,𝑄,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem omsfval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
2 simp1 1136 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄𝑉)
31, 2fexd 7156 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅 ∈ V)
4 omsval 34298 . . 3 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
53, 4syl 17 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
6 simpr 484 . . . . . . . 8 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴)
76sseq1d 3961 . . . . . . 7 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑎 𝑧𝐴 𝑧))
87anbi1d 631 . . . . . 6 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ((𝑎 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑧𝑧 ≼ ω)))
98rabbidv 3402 . . . . 5 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
109mpteq1d 5176 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1110rneqd 5873 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211infeq1d 9357 . 2 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
13 simp3 1138 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 𝑄)
14 fdm 6655 . . . . . 6 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
15143ad2ant2 1134 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1615unieqd 4867 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1713, 16sseqtrrd 3967 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 dom 𝑅)
182uniexd 7670 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄 ∈ V)
19 ssexg 5256 . . . . 5 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
2013, 18, 19syl2anc 584 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ V)
21 elpwg 4548 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2220, 21syl 17 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2317, 22mpbird 257 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ 𝒫 dom 𝑅)
24 xrltso 13035 . . . 4 < Or ℝ*
25 iccssxr 13325 . . . . 5 (0[,]+∞) ⊆ ℝ*
26 soss 5539 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
2725, 26ax-mp 5 . . . 4 ( < Or ℝ* → < Or (0[,]+∞))
2824, 27mp1i 13 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → < Or (0[,]+∞))
2928infexd 9363 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ∈ V)
305, 12, 23, 29fvmptd 6931 1 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4545   cuni 4854   class class class wbr 5086  cmpt 5167   Or wor 5518  dom cdm 5611  ran crn 5612  wf 6472  cfv 6476  (class class class)co 7341  ωcom 7791  cdom 8862  infcinf 9320  0cc0 11001  +∞cpnf 11138  *cxr 11140   < clt 11141  [,]cicc 13243  Σ*cesum 34032  toOMeascoms 34296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-icc 13247  df-esum 34033  df-oms 34297
This theorem is referenced by:  omsf  34301  oms0  34302  omsmon  34303  omssubaddlem  34304  omssubadd  34305
  Copyright terms: Public domain W3C validator