Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsfval Structured version   Visualization version   GIF version

Theorem omsfval 32261
Description: Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsfval ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑥,𝑄,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem omsfval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
2 simp1 1135 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄𝑉)
31, 2fexd 7103 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅 ∈ V)
4 omsval 32260 . . 3 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
53, 4syl 17 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
6 simpr 485 . . . . . . . 8 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴)
76sseq1d 3952 . . . . . . 7 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑎 𝑧𝐴 𝑧))
87anbi1d 630 . . . . . 6 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ((𝑎 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑧𝑧 ≼ ω)))
98rabbidv 3414 . . . . 5 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
109mpteq1d 5169 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1110rneqd 5847 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211infeq1d 9236 . 2 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
13 simp3 1137 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 𝑄)
14 fdm 6609 . . . . . 6 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
15143ad2ant2 1133 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1615unieqd 4853 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1713, 16sseqtrrd 3962 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 dom 𝑅)
182uniexd 7595 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄 ∈ V)
19 ssexg 5247 . . . . 5 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
2013, 18, 19syl2anc 584 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ V)
21 elpwg 4536 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2220, 21syl 17 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2317, 22mpbird 256 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ 𝒫 dom 𝑅)
24 xrltso 12875 . . . 4 < Or ℝ*
25 iccssxr 13162 . . . . 5 (0[,]+∞) ⊆ ℝ*
26 soss 5523 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
2725, 26ax-mp 5 . . . 4 ( < Or ℝ* → < Or (0[,]+∞))
2824, 27mp1i 13 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → < Or (0[,]+∞))
2928infexd 9242 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ∈ V)
305, 12, 23, 29fvmptd 6882 1 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  wss 3887  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  cmpt 5157   Or wor 5502  dom cdm 5589  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  infcinf 9200  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  [,]cicc 13082  Σ*cesum 31995  toOMeascoms 32258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-icc 13086  df-esum 31996  df-oms 32259
This theorem is referenced by:  omsf  32263  oms0  32264  omsmon  32265  omssubaddlem  32266  omssubadd  32267
  Copyright terms: Public domain W3C validator