Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1 44035
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof1 𝐹:ran FermatNo–1-1→ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof1
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
21prmdvdsfmtnof 44034 . 2 𝐹:ran FermatNo⟶ℙ
3 breq2 5056 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓𝑝𝑔))
43rabbidv 3465 . . . . . . 7 (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝𝑔})
54infeq1d 8938 . . . . . 6 (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
6 id 22 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ ran FermatNo)
7 ltso 10719 . . . . . . . 8 < Or ℝ
87a1i 11 . . . . . . 7 (𝑔 ∈ ran FermatNo → < Or ℝ)
98infexd 8944 . . . . . 6 (𝑔 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ V)
101, 5, 6, 9fvmptd3 6782 . . . . 5 (𝑔 ∈ ran FermatNo → (𝐹𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
11 breq2 5056 . . . . . . . 8 (𝑓 = → (𝑝𝑓𝑝))
1211rabbidv 3465 . . . . . . 7 (𝑓 = → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝})
1312infeq1d 8938 . . . . . 6 (𝑓 = → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
14 id 22 . . . . . 6 ( ∈ ran FermatNo → ∈ ran FermatNo)
157a1i 11 . . . . . . 7 ( ∈ ran FermatNo → < Or ℝ)
1615infexd 8944 . . . . . 6 ( ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) ∈ V)
171, 13, 14, 16fvmptd3 6782 . . . . 5 ( ∈ ran FermatNo → (𝐹) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
1810, 17eqeqan12d 2841 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )))
19 fmtnorn 43982 . . . . . . 7 (𝑔 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔)
20 fmtnoge3 43978 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
21 uzuzle23 12286 . . . . . . . . . . 11 ((FermatNo‘𝑛) ∈ (ℤ‘3) → (FermatNo‘𝑛) ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘2))
2322adantr 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → (FermatNo‘𝑛) ∈ (ℤ‘2))
24 eleq1 2903 . . . . . . . . . 10 ((FermatNo‘𝑛) = 𝑔 → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2524adantl 485 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2623, 25mpbid 235 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → 𝑔 ∈ (ℤ‘2))
2726rexlimiva 3273 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔𝑔 ∈ (ℤ‘2))
2819, 27sylbi 220 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ (ℤ‘2))
29 fmtnorn 43982 . . . . . . 7 ( ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = )
3022adantr 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → (FermatNo‘𝑛) ∈ (ℤ‘2))
31 eleq1 2903 . . . . . . . . . 10 ((FermatNo‘𝑛) = → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3231adantl 485 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3330, 32mpbid 235 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ∈ (ℤ‘2))
3433rexlimiva 3273 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = ∈ (ℤ‘2))
3529, 34sylbi 220 . . . . . 6 ( ∈ ran FermatNo → ∈ (ℤ‘2))
36 eqid 2824 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < )
37 eqid 2824 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )
3836, 37prmdvdsfmtnof1lem1 44032 . . . . . 6 ((𝑔 ∈ (ℤ‘2) ∧ ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
3928, 35, 38syl2an 598 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
40 prmdvdsfmtnof1lem2 44033 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ ) → 𝑔 = ))
4139, 40syld 47 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → 𝑔 = ))
4218, 41sylbid 243 . . 3 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
4342rgen2 3198 . 2 𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )
44 dff13 7005 . 2 (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧ ∀𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )))
452, 43, 44mpbir2an 710 1 𝐹:ran FermatNo–1-1→ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3133  wrex 3134  {crab 3137  Vcvv 3480   class class class wbr 5052  cmpt 5132   Or wor 5460  ran crn 5543  wf 6339  1-1wf1 6340  cfv 6343  infcinf 8902  cr 10534   < clt 10673  2c2 11689  3c3 11690  0cn0 11894  cuz 12240  cdvds 15607  cprime 16013  FermatNocfmtno 43975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-gcd 15842  df-prm 16014  df-fmtno 43976
This theorem is referenced by:  prminf2  44036
  Copyright terms: Public domain W3C validator