Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1 47527
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof1 𝐹:ran FermatNo–1-1→ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof1
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
21prmdvdsfmtnof 47526 . 2 𝐹:ran FermatNo⟶ℙ
3 breq2 5121 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓𝑝𝑔))
43rabbidv 3421 . . . . . . 7 (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝𝑔})
54infeq1d 9484 . . . . . 6 (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
6 id 22 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ ran FermatNo)
7 ltso 11308 . . . . . . . 8 < Or ℝ
87a1i 11 . . . . . . 7 (𝑔 ∈ ran FermatNo → < Or ℝ)
98infexd 9490 . . . . . 6 (𝑔 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ V)
101, 5, 6, 9fvmptd3 7006 . . . . 5 (𝑔 ∈ ran FermatNo → (𝐹𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
11 breq2 5121 . . . . . . . 8 (𝑓 = → (𝑝𝑓𝑝))
1211rabbidv 3421 . . . . . . 7 (𝑓 = → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝})
1312infeq1d 9484 . . . . . 6 (𝑓 = → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
14 id 22 . . . . . 6 ( ∈ ran FermatNo → ∈ ran FermatNo)
157a1i 11 . . . . . . 7 ( ∈ ran FermatNo → < Or ℝ)
1615infexd 9490 . . . . . 6 ( ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) ∈ V)
171, 13, 14, 16fvmptd3 7006 . . . . 5 ( ∈ ran FermatNo → (𝐹) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
1810, 17eqeqan12d 2748 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )))
19 fmtnorn 47474 . . . . . . 7 (𝑔 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔)
20 fmtnoge3 47470 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
21 uzuzle23 12898 . . . . . . . . . . 11 ((FermatNo‘𝑛) ∈ (ℤ‘3) → (FermatNo‘𝑛) ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘2))
2322adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → (FermatNo‘𝑛) ∈ (ℤ‘2))
24 eleq1 2821 . . . . . . . . . 10 ((FermatNo‘𝑛) = 𝑔 → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2524adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2623, 25mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → 𝑔 ∈ (ℤ‘2))
2726rexlimiva 3131 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔𝑔 ∈ (ℤ‘2))
2819, 27sylbi 217 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ (ℤ‘2))
29 fmtnorn 47474 . . . . . . 7 ( ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = )
3022adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → (FermatNo‘𝑛) ∈ (ℤ‘2))
31 eleq1 2821 . . . . . . . . . 10 ((FermatNo‘𝑛) = → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3231adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3330, 32mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ∈ (ℤ‘2))
3433rexlimiva 3131 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = ∈ (ℤ‘2))
3529, 34sylbi 217 . . . . . 6 ( ∈ ran FermatNo → ∈ (ℤ‘2))
36 eqid 2734 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < )
37 eqid 2734 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )
3836, 37prmdvdsfmtnof1lem1 47524 . . . . . 6 ((𝑔 ∈ (ℤ‘2) ∧ ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
3928, 35, 38syl2an 596 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
40 prmdvdsfmtnof1lem2 47525 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ ) → 𝑔 = ))
4139, 40syld 47 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → 𝑔 = ))
4218, 41sylbid 240 . . 3 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
4342rgen2 3182 . 2 𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )
44 dff13 7244 . 2 (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧ ∀𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )))
452, 43, 44mpbir2an 711 1 𝐹:ran FermatNo–1-1→ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  wrex 3059  {crab 3413  Vcvv 3457   class class class wbr 5117  cmpt 5199   Or wor 5558  ran crn 5653  wf 6524  1-1wf1 6525  cfv 6528  infcinf 9448  cr 11121   < clt 11262  2c2 12288  3c3 12289  0cn0 12494  cuz 12845  cdvds 16259  cprime 16677  FermatNocfmtno 47467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-prod 15909  df-dvds 16260  df-gcd 16501  df-prm 16678  df-fmtno 47468
This theorem is referenced by:  prminf2  47528
  Copyright terms: Public domain W3C validator