Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1 47714
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof1 𝐹:ran FermatNo–1-1→ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof1
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
21prmdvdsfmtnof 47713 . 2 𝐹:ran FermatNo⟶ℙ
3 breq2 5099 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓𝑝𝑔))
43rabbidv 3403 . . . . . . 7 (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝𝑔})
54infeq1d 9371 . . . . . 6 (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
6 id 22 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ ran FermatNo)
7 ltso 11202 . . . . . . . 8 < Or ℝ
87a1i 11 . . . . . . 7 (𝑔 ∈ ran FermatNo → < Or ℝ)
98infexd 9377 . . . . . 6 (𝑔 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ V)
101, 5, 6, 9fvmptd3 6960 . . . . 5 (𝑔 ∈ ran FermatNo → (𝐹𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
11 breq2 5099 . . . . . . . 8 (𝑓 = → (𝑝𝑓𝑝))
1211rabbidv 3403 . . . . . . 7 (𝑓 = → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝})
1312infeq1d 9371 . . . . . 6 (𝑓 = → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
14 id 22 . . . . . 6 ( ∈ ran FermatNo → ∈ ran FermatNo)
157a1i 11 . . . . . . 7 ( ∈ ran FermatNo → < Or ℝ)
1615infexd 9377 . . . . . 6 ( ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) ∈ V)
171, 13, 14, 16fvmptd3 6960 . . . . 5 ( ∈ ran FermatNo → (𝐹) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
1810, 17eqeqan12d 2747 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )))
19 fmtnorn 47661 . . . . . . 7 (𝑔 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔)
20 fmtnoge3 47657 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
21 uzuzle23 12786 . . . . . . . . . . 11 ((FermatNo‘𝑛) ∈ (ℤ‘3) → (FermatNo‘𝑛) ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘2))
2322adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → (FermatNo‘𝑛) ∈ (ℤ‘2))
24 eleq1 2821 . . . . . . . . . 10 ((FermatNo‘𝑛) = 𝑔 → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2524adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2623, 25mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → 𝑔 ∈ (ℤ‘2))
2726rexlimiva 3126 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔𝑔 ∈ (ℤ‘2))
2819, 27sylbi 217 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ (ℤ‘2))
29 fmtnorn 47661 . . . . . . 7 ( ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = )
3022adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → (FermatNo‘𝑛) ∈ (ℤ‘2))
31 eleq1 2821 . . . . . . . . . 10 ((FermatNo‘𝑛) = → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3231adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3330, 32mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ∈ (ℤ‘2))
3433rexlimiva 3126 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = ∈ (ℤ‘2))
3529, 34sylbi 217 . . . . . 6 ( ∈ ran FermatNo → ∈ (ℤ‘2))
36 eqid 2733 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < )
37 eqid 2733 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )
3836, 37prmdvdsfmtnof1lem1 47711 . . . . . 6 ((𝑔 ∈ (ℤ‘2) ∧ ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
3928, 35, 38syl2an 596 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
40 prmdvdsfmtnof1lem2 47712 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ ) → 𝑔 = ))
4139, 40syld 47 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → 𝑔 = ))
4218, 41sylbid 240 . . 3 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
4342rgen2 3173 . 2 𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )
44 dff13 7196 . 2 (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧ ∀𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )))
452, 43, 44mpbir2an 711 1 𝐹:ran FermatNo–1-1→ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437   class class class wbr 5095  cmpt 5176   Or wor 5528  ran crn 5622  wf 6484  1-1wf1 6485  cfv 6488  infcinf 9334  cr 11014   < clt 11155  2c2 12189  3c3 12190  0cn0 12390  cuz 12740  cdvds 16167  cprime 16586  FermatNocfmtno 47654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-prod 15815  df-dvds 16168  df-gcd 16410  df-prm 16587  df-fmtno 47655
This theorem is referenced by:  prminf2  47715
  Copyright terms: Public domain W3C validator