Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1 47461
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof1 𝐹:ran FermatNo–1-1→ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof1
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
21prmdvdsfmtnof 47460 . 2 𝐹:ran FermatNo⟶ℙ
3 breq2 5170 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓𝑝𝑔))
43rabbidv 3451 . . . . . . 7 (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝𝑔})
54infeq1d 9546 . . . . . 6 (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
6 id 22 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ ran FermatNo)
7 ltso 11370 . . . . . . . 8 < Or ℝ
87a1i 11 . . . . . . 7 (𝑔 ∈ ran FermatNo → < Or ℝ)
98infexd 9552 . . . . . 6 (𝑔 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ V)
101, 5, 6, 9fvmptd3 7052 . . . . 5 (𝑔 ∈ ran FermatNo → (𝐹𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
11 breq2 5170 . . . . . . . 8 (𝑓 = → (𝑝𝑓𝑝))
1211rabbidv 3451 . . . . . . 7 (𝑓 = → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝})
1312infeq1d 9546 . . . . . 6 (𝑓 = → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
14 id 22 . . . . . 6 ( ∈ ran FermatNo → ∈ ran FermatNo)
157a1i 11 . . . . . . 7 ( ∈ ran FermatNo → < Or ℝ)
1615infexd 9552 . . . . . 6 ( ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) ∈ V)
171, 13, 14, 16fvmptd3 7052 . . . . 5 ( ∈ ran FermatNo → (𝐹) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
1810, 17eqeqan12d 2754 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )))
19 fmtnorn 47408 . . . . . . 7 (𝑔 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔)
20 fmtnoge3 47404 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
21 uzuzle23 12954 . . . . . . . . . . 11 ((FermatNo‘𝑛) ∈ (ℤ‘3) → (FermatNo‘𝑛) ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘2))
2322adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → (FermatNo‘𝑛) ∈ (ℤ‘2))
24 eleq1 2832 . . . . . . . . . 10 ((FermatNo‘𝑛) = 𝑔 → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2524adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2623, 25mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → 𝑔 ∈ (ℤ‘2))
2726rexlimiva 3153 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔𝑔 ∈ (ℤ‘2))
2819, 27sylbi 217 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ (ℤ‘2))
29 fmtnorn 47408 . . . . . . 7 ( ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = )
3022adantr 480 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → (FermatNo‘𝑛) ∈ (ℤ‘2))
31 eleq1 2832 . . . . . . . . . 10 ((FermatNo‘𝑛) = → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3231adantl 481 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3330, 32mpbid 232 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ∈ (ℤ‘2))
3433rexlimiva 3153 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = ∈ (ℤ‘2))
3529, 34sylbi 217 . . . . . 6 ( ∈ ran FermatNo → ∈ (ℤ‘2))
36 eqid 2740 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < )
37 eqid 2740 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )
3836, 37prmdvdsfmtnof1lem1 47458 . . . . . 6 ((𝑔 ∈ (ℤ‘2) ∧ ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
3928, 35, 38syl2an 595 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
40 prmdvdsfmtnof1lem2 47459 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ ) → 𝑔 = ))
4139, 40syld 47 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → 𝑔 = ))
4218, 41sylbid 240 . . 3 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
4342rgen2 3205 . 2 𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )
44 dff13 7292 . 2 (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧ ∀𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )))
452, 43, 44mpbir2an 710 1 𝐹:ran FermatNo–1-1→ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249   Or wor 5606  ran crn 5701  wf 6569  1-1wf1 6570  cfv 6573  infcinf 9510  cr 11183   < clt 11324  2c2 12348  3c3 12349  0cn0 12553  cuz 12903  cdvds 16302  cprime 16718  FermatNocfmtno 47401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-dvds 16303  df-gcd 16541  df-prm 16719  df-fmtno 47402
This theorem is referenced by:  prminf2  47462
  Copyright terms: Public domain W3C validator