| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | prmdvdsfmtnof.1 | . . 3
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) | 
| 2 | 1 | prmdvdsfmtnof 47578 | . 2
⊢ 𝐹:ran
FermatNo⟶ℙ | 
| 3 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑝 ∥ 𝑓 ↔ 𝑝 ∥ 𝑔)) | 
| 4 | 3 | rabbidv 3443 | . . . . . . 7
⊢ (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}) | 
| 5 | 4 | infeq1d 9518 | . . . . . 6
⊢ (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < )) | 
| 6 |  | id 22 | . . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
𝑔 ∈ ran
FermatNo) | 
| 7 |  | ltso 11342 | . . . . . . . 8
⊢  < Or
ℝ | 
| 8 | 7 | a1i 11 | . . . . . . 7
⊢ (𝑔 ∈ ran FermatNo → <
Or ℝ) | 
| 9 | 8 | infexd 9524 | . . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
V) | 
| 10 | 1, 5, 6, 9 | fvmptd3 7038 | . . . . 5
⊢ (𝑔 ∈ ran FermatNo →
(𝐹‘𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < )) | 
| 11 |  | breq2 5146 | . . . . . . . 8
⊢ (𝑓 = ℎ → (𝑝 ∥ 𝑓 ↔ 𝑝 ∥ ℎ)) | 
| 12 | 11 | rabbidv 3443 | . . . . . . 7
⊢ (𝑓 = ℎ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}) | 
| 13 | 12 | infeq1d 9518 | . . . . . 6
⊢ (𝑓 = ℎ → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < )) | 
| 14 |  | id 22 | . . . . . 6
⊢ (ℎ ∈ ran FermatNo → ℎ ∈ ran
FermatNo) | 
| 15 | 7 | a1i 11 | . . . . . . 7
⊢ (ℎ ∈ ran FermatNo → <
Or ℝ) | 
| 16 | 15 | infexd 9524 | . . . . . 6
⊢ (ℎ ∈ ran FermatNo →
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, < ) ∈
V) | 
| 17 | 1, 13, 14, 16 | fvmptd3 7038 | . . . . 5
⊢ (ℎ ∈ ran FermatNo →
(𝐹‘ℎ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < )) | 
| 18 | 10, 17 | eqeqan12d 2750 | . . . 4
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((𝐹‘𝑔) = (𝐹‘ℎ) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ))) | 
| 19 |  | fmtnorn 47526 | . . . . . . 7
⊢ (𝑔 ∈ ran FermatNo ↔
∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = 𝑔) | 
| 20 |  | fmtnoge3 47522 | . . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛)
∈ (ℤ≥‘3)) | 
| 21 |  | uzuzle23 12932 | . . . . . . . . . . 11
⊢
((FermatNo‘𝑛)
∈ (ℤ≥‘3) → (FermatNo‘𝑛) ∈
(ℤ≥‘2)) | 
| 22 | 20, 21 | syl 17 | . . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛)
∈ (ℤ≥‘2)) | 
| 23 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) →
(FermatNo‘𝑛) ∈
(ℤ≥‘2)) | 
| 24 |  | eleq1 2828 | . . . . . . . . . 10
⊢
((FermatNo‘𝑛)
= 𝑔 →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ 𝑔 ∈
(ℤ≥‘2))) | 
| 25 | 24 | adantl 481 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ 𝑔 ∈
(ℤ≥‘2))) | 
| 26 | 23, 25 | mpbid 232 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) → 𝑔 ∈
(ℤ≥‘2)) | 
| 27 | 26 | rexlimiva 3146 | . . . . . . 7
⊢
(∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = 𝑔 → 𝑔 ∈
(ℤ≥‘2)) | 
| 28 | 19, 27 | sylbi 217 | . . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
𝑔 ∈
(ℤ≥‘2)) | 
| 29 |  | fmtnorn 47526 | . . . . . . 7
⊢ (ℎ ∈ ran FermatNo ↔
∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = ℎ) | 
| 30 | 22 | adantr 480 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) →
(FermatNo‘𝑛) ∈
(ℤ≥‘2)) | 
| 31 |  | eleq1 2828 | . . . . . . . . . 10
⊢
((FermatNo‘𝑛)
= ℎ →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ ℎ ∈
(ℤ≥‘2))) | 
| 32 | 31 | adantl 481 | . . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ ℎ ∈
(ℤ≥‘2))) | 
| 33 | 30, 32 | mpbid 232 | . . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) → ℎ ∈
(ℤ≥‘2)) | 
| 34 | 33 | rexlimiva 3146 | . . . . . . 7
⊢
(∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = ℎ → ℎ ∈
(ℤ≥‘2)) | 
| 35 | 29, 34 | sylbi 217 | . . . . . 6
⊢ (ℎ ∈ ran FermatNo → ℎ ∈
(ℤ≥‘2)) | 
| 36 |  | eqid 2736 | . . . . . . 7
⊢
inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, <
) | 
| 37 |  | eqid 2736 | . . . . . . 7
⊢
inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
ℎ}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, <
) | 
| 38 | 36, 37 | prmdvdsfmtnof1lem1 47576 | . . . . . 6
⊢ ((𝑔 ∈
(ℤ≥‘2) ∧ ℎ ∈ (ℤ≥‘2))
→ (inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, < ) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
ℙ ∧ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) ∥
𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ))) | 
| 39 | 28, 35, 38 | syl2an 596 | . . . . 5
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈ ℙ ∧
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ))) | 
| 40 |  | prmdvdsfmtnof1lem2 47577 | . . . . 5
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
ℙ ∧ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) ∥
𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ) → 𝑔 = ℎ)) | 
| 41 | 39, 40 | syld 47 | . . . 4
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ) → 𝑔 = ℎ)) | 
| 42 | 18, 41 | sylbid 240 | . . 3
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ)) | 
| 43 | 42 | rgen2 3198 | . 2
⊢
∀𝑔 ∈ ran
FermatNo∀ℎ ∈ ran
FermatNo((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ) | 
| 44 |  | dff13 7276 | . 2
⊢ (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧
∀𝑔 ∈ ran
FermatNo∀ℎ ∈ ran
FermatNo((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ))) | 
| 45 | 2, 43, 44 | mpbir2an 711 | 1
⊢ 𝐹:ran FermatNo–1-1→ℙ |