Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1 43756
Description: The mapping of a Fermat number to its smallest prime factor is a one-to-one function. (Contributed by AV, 4-Aug-2021.)
Hypothesis
Ref Expression
prmdvdsfmtnof.1 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
Assertion
Ref Expression
prmdvdsfmtnof1 𝐹:ran FermatNo–1-1→ℙ
Distinct variable group:   𝑓,𝑝
Allowed substitution hints:   𝐹(𝑓,𝑝)

Proof of Theorem prmdvdsfmtnof1
Dummy variables 𝑔 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmdvdsfmtnof.1 . . 3 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ))
21prmdvdsfmtnof 43755 . 2 𝐹:ran FermatNo⟶ℙ
3 breq2 5073 . . . . . . . 8 (𝑓 = 𝑔 → (𝑝𝑓𝑝𝑔))
43rabbidv 3483 . . . . . . 7 (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝𝑔})
54infeq1d 8944 . . . . . 6 (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
6 id 22 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ ran FermatNo)
7 ltso 10724 . . . . . . . 8 < Or ℝ
87a1i 11 . . . . . . 7 (𝑔 ∈ ran FermatNo → < Or ℝ)
98infexd 8950 . . . . . 6 (𝑔 ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ V)
101, 5, 6, 9fvmptd3 6794 . . . . 5 (𝑔 ∈ ran FermatNo → (𝐹𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ))
11 breq2 5073 . . . . . . . 8 (𝑓 = → (𝑝𝑓𝑝))
1211rabbidv 3483 . . . . . . 7 (𝑓 = → {𝑝 ∈ ℙ ∣ 𝑝𝑓} = {𝑝 ∈ ℙ ∣ 𝑝})
1312infeq1d 8944 . . . . . 6 (𝑓 = → inf({𝑝 ∈ ℙ ∣ 𝑝𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
14 id 22 . . . . . 6 ( ∈ ran FermatNo → ∈ ran FermatNo)
157a1i 11 . . . . . . 7 ( ∈ ran FermatNo → < Or ℝ)
1615infexd 8950 . . . . . 6 ( ∈ ran FermatNo → inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) ∈ V)
171, 13, 14, 16fvmptd3 6794 . . . . 5 ( ∈ ran FermatNo → (𝐹) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ))
1810, 17eqeqan12d 2841 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )))
19 fmtnorn 43703 . . . . . . 7 (𝑔 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔)
20 fmtnoge3 43699 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘3))
21 uzuzle23 12292 . . . . . . . . . . 11 ((FermatNo‘𝑛) ∈ (ℤ‘3) → (FermatNo‘𝑛) ∈ (ℤ‘2))
2220, 21syl 17 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ (ℤ‘2))
2322adantr 483 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → (FermatNo‘𝑛) ∈ (ℤ‘2))
24 eleq1 2903 . . . . . . . . . 10 ((FermatNo‘𝑛) = 𝑔 → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2524adantl 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ 𝑔 ∈ (ℤ‘2)))
2623, 25mpbid 234 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = 𝑔) → 𝑔 ∈ (ℤ‘2))
2726rexlimiva 3284 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝑔𝑔 ∈ (ℤ‘2))
2819, 27sylbi 219 . . . . . 6 (𝑔 ∈ ran FermatNo → 𝑔 ∈ (ℤ‘2))
29 fmtnorn 43703 . . . . . . 7 ( ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = )
3022adantr 483 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → (FermatNo‘𝑛) ∈ (ℤ‘2))
31 eleq1 2903 . . . . . . . . . 10 ((FermatNo‘𝑛) = → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3231adantl 484 . . . . . . . . 9 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ((FermatNo‘𝑛) ∈ (ℤ‘2) ↔ ∈ (ℤ‘2)))
3330, 32mpbid 234 . . . . . . . 8 ((𝑛 ∈ ℕ0 ∧ (FermatNo‘𝑛) = ) → ∈ (ℤ‘2))
3433rexlimiva 3284 . . . . . . 7 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = ∈ (ℤ‘2))
3529, 34sylbi 219 . . . . . 6 ( ∈ ran FermatNo → ∈ (ℤ‘2))
36 eqid 2824 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < )
37 eqid 2824 . . . . . . 7 inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < )
3836, 37prmdvdsfmtnof1lem1 43753 . . . . . 6 ((𝑔 ∈ (ℤ‘2) ∧ ∈ (ℤ‘2)) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
3928, 35, 38syl2an 597 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ )))
40 prmdvdsfmtnof1lem2 43754 . . . . 5 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∈ ℙ ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) ∥ ) → 𝑔 = ))
4139, 40syld 47 . . . 4 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → (inf({𝑝 ∈ ℙ ∣ 𝑝𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝}, ℝ, < ) → 𝑔 = ))
4218, 41sylbid 242 . . 3 ((𝑔 ∈ ran FermatNo ∧ ∈ ran FermatNo) → ((𝐹𝑔) = (𝐹) → 𝑔 = ))
4342rgen2 3206 . 2 𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )
44 dff13 7016 . 2 (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧ ∀𝑔 ∈ ran FermatNo∀ ∈ ran FermatNo((𝐹𝑔) = (𝐹) → 𝑔 = )))
452, 43, 44mpbir2an 709 1 𝐹:ran FermatNo–1-1→ℙ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  Vcvv 3497   class class class wbr 5069  cmpt 5149   Or wor 5476  ran crn 5559  wf 6354  1-1wf1 6355  cfv 6358  infcinf 8908  cr 10539   < clt 10678  2c2 11695  3c3 11696  0cn0 11900  cuz 12246  cdvds 15610  cprime 16018  FermatNocfmtno 43696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-prod 15263  df-dvds 15611  df-gcd 15847  df-prm 16019  df-fmtno 43697
This theorem is referenced by:  prminf2  43757
  Copyright terms: Public domain W3C validator