Step | Hyp | Ref
| Expression |
1 | | prmdvdsfmtnof.1 |
. . 3
⊢ 𝐹 = (𝑓 ∈ ran FermatNo ↦ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < )) |
2 | 1 | prmdvdsfmtnof 45038 |
. 2
⊢ 𝐹:ran
FermatNo⟶ℙ |
3 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (𝑝 ∥ 𝑓 ↔ 𝑝 ∥ 𝑔)) |
4 | 3 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}) |
5 | 4 | infeq1d 9236 |
. . . . . 6
⊢ (𝑓 = 𝑔 → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < )) |
6 | | id 22 |
. . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
𝑔 ∈ ran
FermatNo) |
7 | | ltso 11055 |
. . . . . . . 8
⊢ < Or
ℝ |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (𝑔 ∈ ran FermatNo → <
Or ℝ) |
9 | 8 | infexd 9242 |
. . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
V) |
10 | 1, 5, 6, 9 | fvmptd3 6898 |
. . . . 5
⊢ (𝑔 ∈ ran FermatNo →
(𝐹‘𝑔) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < )) |
11 | | breq2 5078 |
. . . . . . . 8
⊢ (𝑓 = ℎ → (𝑝 ∥ 𝑓 ↔ 𝑝 ∥ ℎ)) |
12 | 11 | rabbidv 3414 |
. . . . . . 7
⊢ (𝑓 = ℎ → {𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓} = {𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}) |
13 | 12 | infeq1d 9236 |
. . . . . 6
⊢ (𝑓 = ℎ → inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑓}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < )) |
14 | | id 22 |
. . . . . 6
⊢ (ℎ ∈ ran FermatNo → ℎ ∈ ran
FermatNo) |
15 | 7 | a1i 11 |
. . . . . . 7
⊢ (ℎ ∈ ran FermatNo → <
Or ℝ) |
16 | 15 | infexd 9242 |
. . . . . 6
⊢ (ℎ ∈ ran FermatNo →
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, < ) ∈
V) |
17 | 1, 13, 14, 16 | fvmptd3 6898 |
. . . . 5
⊢ (ℎ ∈ ran FermatNo →
(𝐹‘ℎ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < )) |
18 | 10, 17 | eqeqan12d 2752 |
. . . 4
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((𝐹‘𝑔) = (𝐹‘ℎ) ↔ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ))) |
19 | | fmtnorn 44986 |
. . . . . . 7
⊢ (𝑔 ∈ ran FermatNo ↔
∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = 𝑔) |
20 | | fmtnoge3 44982 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛)
∈ (ℤ≥‘3)) |
21 | | uzuzle23 12629 |
. . . . . . . . . . 11
⊢
((FermatNo‘𝑛)
∈ (ℤ≥‘3) → (FermatNo‘𝑛) ∈
(ℤ≥‘2)) |
22 | 20, 21 | syl 17 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (FermatNo‘𝑛)
∈ (ℤ≥‘2)) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) →
(FermatNo‘𝑛) ∈
(ℤ≥‘2)) |
24 | | eleq1 2826 |
. . . . . . . . . 10
⊢
((FermatNo‘𝑛)
= 𝑔 →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ 𝑔 ∈
(ℤ≥‘2))) |
25 | 24 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ 𝑔 ∈
(ℤ≥‘2))) |
26 | 23, 25 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
𝑔) → 𝑔 ∈
(ℤ≥‘2)) |
27 | 26 | rexlimiva 3210 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = 𝑔 → 𝑔 ∈
(ℤ≥‘2)) |
28 | 19, 27 | sylbi 216 |
. . . . . 6
⊢ (𝑔 ∈ ran FermatNo →
𝑔 ∈
(ℤ≥‘2)) |
29 | | fmtnorn 44986 |
. . . . . . 7
⊢ (ℎ ∈ ran FermatNo ↔
∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = ℎ) |
30 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) →
(FermatNo‘𝑛) ∈
(ℤ≥‘2)) |
31 | | eleq1 2826 |
. . . . . . . . . 10
⊢
((FermatNo‘𝑛)
= ℎ →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ ℎ ∈
(ℤ≥‘2))) |
32 | 31 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) →
((FermatNo‘𝑛) ∈
(ℤ≥‘2) ↔ ℎ ∈
(ℤ≥‘2))) |
33 | 30, 32 | mpbid 231 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ (FermatNo‘𝑛) =
ℎ) → ℎ ∈
(ℤ≥‘2)) |
34 | 33 | rexlimiva 3210 |
. . . . . . 7
⊢
(∃𝑛 ∈
ℕ0 (FermatNo‘𝑛) = ℎ → ℎ ∈
(ℤ≥‘2)) |
35 | 29, 34 | sylbi 216 |
. . . . . 6
⊢ (ℎ ∈ ran FermatNo → ℎ ∈
(ℤ≥‘2)) |
36 | | eqid 2738 |
. . . . . . 7
⊢
inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, <
) |
37 | | eqid 2738 |
. . . . . . 7
⊢
inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
ℎ}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, <
) |
38 | 36, 37 | prmdvdsfmtnof1lem1 45036 |
. . . . . 6
⊢ ((𝑔 ∈
(ℤ≥‘2) ∧ ℎ ∈ (ℤ≥‘2))
→ (inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) =
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ ℎ}, ℝ, < ) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
ℙ ∧ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) ∥
𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ))) |
39 | 28, 35, 38 | syl2an 596 |
. . . . 5
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ) → (inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈ ℙ ∧
inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ 𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ))) |
40 | | prmdvdsfmtnof1lem2 45037 |
. . . . 5
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∈
ℙ ∧ inf({𝑝 ∈
ℙ ∣ 𝑝 ∥
𝑔}, ℝ, < ) ∥
𝑔 ∧ inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑔}, ℝ, < ) ∥ ℎ) → 𝑔 = ℎ)) |
41 | 39, 40 | syld 47 |
. . . 4
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
(inf({𝑝 ∈ ℙ
∣ 𝑝 ∥ 𝑔}, ℝ, < ) = inf({𝑝 ∈ ℙ ∣ 𝑝 ∥ ℎ}, ℝ, < ) → 𝑔 = ℎ)) |
42 | 18, 41 | sylbid 239 |
. . 3
⊢ ((𝑔 ∈ ran FermatNo ∧ ℎ ∈ ran FermatNo) →
((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ)) |
43 | 42 | rgen2 3120 |
. 2
⊢
∀𝑔 ∈ ran
FermatNo∀ℎ ∈ ran
FermatNo((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ) |
44 | | dff13 7128 |
. 2
⊢ (𝐹:ran FermatNo–1-1→ℙ ↔ (𝐹:ran FermatNo⟶ℙ ∧
∀𝑔 ∈ ran
FermatNo∀ℎ ∈ ran
FermatNo((𝐹‘𝑔) = (𝐹‘ℎ) → 𝑔 = ℎ))) |
45 | 2, 43, 44 | mpbir2an 708 |
1
⊢ 𝐹:ran FermatNo–1-1→ℙ |