MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   GIF version

Theorem uffixsn 23863
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)

Proof of Theorem uffixsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2823 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
2 ufilfil 23842 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filn0 23800 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 intssuni 4946 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
52, 3, 43syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
6 filunibas 23819 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
72, 6syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
85, 7sseqtrd 3995 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
98sselda 3958 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
109snssd 4785 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ⊆ 𝑋)
11 snex 5406 . . . . 5 {𝐴} ∈ V
1211elpw 4579 . . . 4 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
1310, 12sylibr 234 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝒫 𝑋)
14 snidg 4636 . . . 4 (𝐴 𝐹𝐴 ∈ {𝐴})
1514adantl 481 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴 ∈ {𝐴})
161, 13, 15elrabd 3673 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
17 uffixfr 23861 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
1817biimpa 476 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
1916, 18eleqtrrd 2837 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cuni 4883   cint 4922  cfv 6531  Filcfil 23783  UFilcufil 23837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fbas 21312  df-fg 21313  df-fil 23784  df-ufil 23839
This theorem is referenced by:  ufildom1  23864  cfinufil  23866  fin1aufil  23870
  Copyright terms: Public domain W3C validator