MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   GIF version

Theorem uffixsn 23835
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)

Proof of Theorem uffixsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2820 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
2 ufilfil 23814 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filn0 23772 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 intssuni 4915 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
52, 3, 43syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
6 filunibas 23791 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
72, 6syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
85, 7sseqtrd 3966 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
98sselda 3929 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
109snssd 4756 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ⊆ 𝑋)
11 snex 5369 . . . . 5 {𝐴} ∈ V
1211elpw 4549 . . . 4 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
1310, 12sylibr 234 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝒫 𝑋)
14 snidg 4608 . . . 4 (𝐴 𝐹𝐴 ∈ {𝐴})
1514adantl 481 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴 ∈ {𝐴})
161, 13, 15elrabd 3644 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
17 uffixfr 23833 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
1817biimpa 476 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
1916, 18eleqtrrd 2834 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  wss 3897  c0 4278  𝒫 cpw 4545  {csn 4571   cuni 4854   cint 4892  cfv 6476  Filcfil 23755  UFilcufil 23809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-fbas 21283  df-fg 21284  df-fil 23756  df-ufil 23811
This theorem is referenced by:  ufildom1  23836  cfinufil  23838  fin1aufil  23842
  Copyright terms: Public domain W3C validator