Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uffixsn | Structured version Visualization version GIF version |
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
uffixsn | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . 3 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
2 | ufilfil 23055 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
3 | filn0 23013 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
4 | intssuni 4901 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
5 | 2, 3, 4 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
6 | filunibas 23032 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
8 | 5, 7 | sseqtrd 3961 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
9 | 8 | sselda 3921 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ 𝑋) |
10 | 9 | snssd 4742 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ⊆ 𝑋) |
11 | snex 5354 | . . . . 5 ⊢ {𝐴} ∈ V | |
12 | 11 | elpw 4537 | . . . 4 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
13 | 10, 12 | sylibr 233 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝒫 𝑋) |
14 | snidg 4595 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝐹 → 𝐴 ∈ {𝐴}) | |
15 | 14 | adantl 482 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ {𝐴}) |
16 | 1, 13, 15 | elrabd 3626 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
17 | uffixfr 23074 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) | |
18 | 17 | biimpa 477 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
19 | 16, 18 | eleqtrrd 2842 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ∪ cuni 4839 ∩ cint 4879 ‘cfv 6433 Filcfil 22996 UFilcufil 23050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-fbas 20594 df-fg 20595 df-fil 22997 df-ufil 23052 |
This theorem is referenced by: ufildom1 23077 cfinufil 23079 fin1aufil 23083 |
Copyright terms: Public domain | W3C validator |