MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   GIF version

Theorem uffixsn 23649
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)

Proof of Theorem uffixsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2822 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
2 ufilfil 23628 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filn0 23586 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 intssuni 4974 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
52, 3, 43syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
6 filunibas 23605 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
72, 6syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
85, 7sseqtrd 4022 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
98sselda 3982 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
109snssd 4812 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ⊆ 𝑋)
11 snex 5431 . . . . 5 {𝐴} ∈ V
1211elpw 4606 . . . 4 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
1310, 12sylibr 233 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝒫 𝑋)
14 snidg 4662 . . . 4 (𝐴 𝐹𝐴 ∈ {𝐴})
1514adantl 482 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴 ∈ {𝐴})
161, 13, 15elrabd 3685 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
17 uffixfr 23647 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
1817biimpa 477 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
1916, 18eleqtrrd 2836 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  {crab 3432  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628   cuni 4908   cint 4950  cfv 6543  Filcfil 23569  UFilcufil 23623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-fbas 21141  df-fg 21142  df-fil 23570  df-ufil 23625
This theorem is referenced by:  ufildom1  23650  cfinufil  23652  fin1aufil  23656
  Copyright terms: Public domain W3C validator