Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uffixsn | Structured version Visualization version GIF version |
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
uffixsn | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2840 | . . 3 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
2 | ufilfil 22604 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
3 | filn0 22562 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
4 | intssuni 4860 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
5 | 2, 3, 4 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
6 | filunibas 22581 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
7 | 2, 6 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
8 | 5, 7 | sseqtrd 3932 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
9 | 8 | sselda 3892 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ 𝑋) |
10 | 9 | snssd 4699 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ⊆ 𝑋) |
11 | snex 5300 | . . . . 5 ⊢ {𝐴} ∈ V | |
12 | 11 | elpw 4498 | . . . 4 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
13 | 10, 12 | sylibr 237 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝒫 𝑋) |
14 | snidg 4556 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝐹 → 𝐴 ∈ {𝐴}) | |
15 | 14 | adantl 485 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ {𝐴}) |
16 | 1, 13, 15 | elrabd 3604 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
17 | uffixfr 22623 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) | |
18 | 17 | biimpa 480 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
19 | 16, 18 | eleqtrrd 2855 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {crab 3074 ⊆ wss 3858 ∅c0 4225 𝒫 cpw 4494 {csn 4522 ∪ cuni 4798 ∩ cint 4838 ‘cfv 6335 Filcfil 22545 UFilcufil 22599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-int 4839 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-fbas 20163 df-fg 20164 df-fil 22546 df-ufil 22601 |
This theorem is referenced by: ufildom1 22626 cfinufil 22628 fin1aufil 22632 |
Copyright terms: Public domain | W3C validator |