MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   GIF version

Theorem uffixsn 23751
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)

Proof of Theorem uffixsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2814 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
2 ufilfil 23730 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filn0 23688 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 intssuni 4964 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
52, 3, 43syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
6 filunibas 23707 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
72, 6syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
85, 7sseqtrd 4014 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
98sselda 3974 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
109snssd 4804 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ⊆ 𝑋)
11 snex 5421 . . . . 5 {𝐴} ∈ V
1211elpw 4598 . . . 4 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
1310, 12sylibr 233 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝒫 𝑋)
14 snidg 4654 . . . 4 (𝐴 𝐹𝐴 ∈ {𝐴})
1514adantl 481 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴 ∈ {𝐴})
161, 13, 15elrabd 3677 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
17 uffixfr 23749 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
1817biimpa 476 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
1916, 18eleqtrrd 2828 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  {crab 3424  wss 3940  c0 4314  𝒫 cpw 4594  {csn 4620   cuni 4899   cint 4940  cfv 6533  Filcfil 23671  UFilcufil 23725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-fbas 21225  df-fg 21226  df-fil 23672  df-ufil 23727
This theorem is referenced by:  ufildom1  23752  cfinufil  23754  fin1aufil  23758
  Copyright terms: Public domain W3C validator