MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Visualization version   GIF version

Theorem uffixsn 22984
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)

Proof of Theorem uffixsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2827 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
2 ufilfil 22963 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
3 filn0 22921 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
4 intssuni 4898 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
52, 3, 43syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
6 filunibas 22940 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
72, 6syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
85, 7sseqtrd 3957 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
98sselda 3917 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴𝑋)
109snssd 4739 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ⊆ 𝑋)
11 snex 5349 . . . . 5 {𝐴} ∈ V
1211elpw 4534 . . . 4 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
1310, 12sylibr 233 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝒫 𝑋)
14 snidg 4592 . . . 4 (𝐴 𝐹𝐴 ∈ {𝐴})
1514adantl 481 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐴 ∈ {𝐴})
161, 13, 15elrabd 3619 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
17 uffixfr 22982 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝐴 𝐹𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥}))
1817biimpa 476 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋𝐴𝑥})
1916, 18eleqtrrd 2842 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 𝐹) → {𝐴} ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   cuni 4836   cint 4876  cfv 6418  Filcfil 22904  UFilcufil 22958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fg 20508  df-fil 22905  df-ufil 22960
This theorem is referenced by:  ufildom1  22985  cfinufil  22987  fin1aufil  22991
  Copyright terms: Public domain W3C validator