![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffixsn | Structured version Visualization version GIF version |
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
uffixsn | ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 22035 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | filn0 21993 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
3 | intssuni 4690 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
5 | filunibas 22012 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
7 | 4, 6 | sseqtrd 3838 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
8 | 7 | sselda 3799 | . . . . 5 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ 𝑋) |
9 | 8 | snssd 4529 | . . . 4 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ⊆ 𝑋) |
10 | snex 5100 | . . . . 5 ⊢ {𝐴} ∈ V | |
11 | 10 | elpw 4356 | . . . 4 ⊢ ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋) |
12 | 9, 11 | sylibr 226 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝒫 𝑋) |
13 | snidg 4399 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝐹 → 𝐴 ∈ {𝐴}) | |
14 | 13 | adantl 474 | . . 3 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐴 ∈ {𝐴}) |
15 | eleq2 2868 | . . . 4 ⊢ (𝑥 = {𝐴} → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ {𝐴})) | |
16 | 15 | elrab 3557 | . . 3 ⊢ ({𝐴} ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥} ↔ ({𝐴} ∈ 𝒫 𝑋 ∧ 𝐴 ∈ {𝐴})) |
17 | 12, 14, 16 | sylanbrc 579 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
18 | uffixfr 22054 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝐴 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥})) | |
19 | 18 | biimpa 469 | . 2 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → 𝐹 = {𝑥 ∈ 𝒫 𝑋 ∣ 𝐴 ∈ 𝑥}) |
20 | 17, 19 | eleqtrrd 2882 | 1 ⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴 ∈ ∩ 𝐹) → {𝐴} ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 {crab 3094 ⊆ wss 3770 ∅c0 4116 𝒫 cpw 4350 {csn 4369 ∪ cuni 4629 ∩ cint 4668 ‘cfv 6102 Filcfil 21976 UFilcufil 22030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-int 4669 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-fbas 20064 df-fg 20065 df-fil 21977 df-ufil 22032 |
This theorem is referenced by: ufildom1 22057 cfinufil 22059 fin1aufil 22063 |
Copyright terms: Public domain | W3C validator |