MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix2 Structured version   Visualization version   GIF version

Theorem uffix2 23840
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦

Proof of Theorem uffix2
StepHypRef Expression
1 ufilfil 23820 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filn0 23778 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
3 intssuni 4920 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
5 filunibas 23797 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
61, 5syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
74, 6sseqtrd 3967 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
87sseld 3929 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝑥𝑋))
98pm4.71rd 562 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝑥 𝐹)))
10 uffixfr 23839 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1110anbi2d 630 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝑋𝑥 𝐹) ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
129, 11bitrd 279 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
1312exbidv 1922 . 2 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
14 n0 4302 . 2 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
15 df-rex 3058 . 2 (∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦} ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1613, 14, 153bitr4g 314 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wne 2929  wrex 3057  {crab 3396  wss 3898  c0 4282  𝒫 cpw 4549   cuni 4858   cint 4897  cfv 6486  Filcfil 23761  UFilcufil 23815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-fbas 21290  df-fg 21291  df-fil 23762  df-ufil 23817
This theorem is referenced by:  uffinfix  23843
  Copyright terms: Public domain W3C validator