![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uffix2 | Structured version Visualization version GIF version |
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
uffix2 | ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufilfil 23933 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
2 | filn0 23891 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
3 | intssuni 4994 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
5 | filunibas 23910 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
7 | 4, 6 | sseqtrd 4049 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
8 | 7 | sseld 4007 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → 𝑥 ∈ 𝑋)) |
9 | 8 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹))) |
10 | uffixfr 23952 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
11 | 10 | anbi2d 629 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
12 | 9, 11 | bitrd 279 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
13 | 12 | exbidv 1920 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
14 | n0 4376 | . 2 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
15 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
16 | 13, 14, 15 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 ‘cfv 6573 Filcfil 23874 UFilcufil 23928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-fg 21385 df-fil 23875 df-ufil 23930 |
This theorem is referenced by: uffinfix 23956 |
Copyright terms: Public domain | W3C validator |