MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix2 Structured version   Visualization version   GIF version

Theorem uffix2 23953
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦

Proof of Theorem uffix2
StepHypRef Expression
1 ufilfil 23933 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filn0 23891 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
3 intssuni 4994 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
5 filunibas 23910 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
61, 5syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
74, 6sseqtrd 4049 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
87sseld 4007 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝑥𝑋))
98pm4.71rd 562 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝑥 𝐹)))
10 uffixfr 23952 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1110anbi2d 629 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝑋𝑥 𝐹) ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
129, 11bitrd 279 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
1312exbidv 1920 . 2 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
14 n0 4376 . 2 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
15 df-rex 3077 . 2 (∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦} ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1613, 14, 153bitr4g 314 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   cint 4970  cfv 6573  Filcfil 23874  UFilcufil 23928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-fil 23875  df-ufil 23930
This theorem is referenced by:  uffinfix  23956
  Copyright terms: Public domain W3C validator