MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix2 Structured version   Visualization version   GIF version

Theorem uffix2 23948
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑋,𝑦

Proof of Theorem uffix2
StepHypRef Expression
1 ufilfil 23928 . . . . . . . 8 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filn0 23886 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅)
3 intssuni 4975 . . . . . . . 8 (𝐹 ≠ ∅ → 𝐹 𝐹)
41, 2, 33syl 18 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 𝐹)
5 filunibas 23905 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
61, 5syl 17 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 = 𝑋)
74, 6sseqtrd 4036 . . . . . 6 (𝐹 ∈ (UFil‘𝑋) → 𝐹𝑋)
87sseld 3994 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝑥𝑋))
98pm4.71rd 562 . . . 4 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝑥 𝐹)))
10 uffixfr 23947 . . . . 5 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1110anbi2d 630 . . . 4 (𝐹 ∈ (UFil‘𝑋) → ((𝑥𝑋𝑥 𝐹) ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
129, 11bitrd 279 . . 3 (𝐹 ∈ (UFil‘𝑋) → (𝑥 𝐹 ↔ (𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
1312exbidv 1919 . 2 (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 𝐹 ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦})))
14 n0 4359 . 2 ( 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 𝐹)
15 df-rex 3069 . 2 (∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦} ↔ ∃𝑥(𝑥𝑋𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
1613, 14, 153bitr4g 314 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 ≠ ∅ ↔ ∃𝑥𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋𝑥𝑦}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951  cfv 6563  Filcfil 23869  UFilcufil 23923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-fbas 21379  df-fg 21380  df-fil 23870  df-ufil 23925
This theorem is referenced by:  uffinfix  23951
  Copyright terms: Public domain W3C validator