| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffix2 | Structured version Visualization version GIF version | ||
| Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| uffix2 | ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil 23847 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
| 2 | filn0 23805 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
| 3 | intssuni 4951 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
| 5 | filunibas 23824 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
| 6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
| 7 | 4, 6 | sseqtrd 4000 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
| 8 | 7 | sseld 3962 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → 𝑥 ∈ 𝑋)) |
| 9 | 8 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹))) |
| 10 | uffixfr 23866 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
| 11 | 10 | anbi2d 630 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 12 | 9, 11 | bitrd 279 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 13 | 12 | exbidv 1921 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 14 | n0 4333 | . 2 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
| 15 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
| 16 | 13, 14, 15 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ∩ cint 4927 ‘cfv 6536 Filcfil 23788 UFilcufil 23842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-fbas 21317 df-fg 21318 df-fil 23789 df-ufil 23844 |
| This theorem is referenced by: uffinfix 23870 |
| Copyright terms: Public domain | W3C validator |