| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uffix2 | Structured version Visualization version GIF version | ||
| Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
| Ref | Expression |
|---|---|
| uffix2 | ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufilfil 23807 | . . . . . . . 8 ⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) | |
| 2 | filn0 23765 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) | |
| 3 | intssuni 4923 | . . . . . . . 8 ⊢ (𝐹 ≠ ∅ → ∩ 𝐹 ⊆ ∪ 𝐹) | |
| 4 | 1, 2, 3 | 3syl 18 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ ∪ 𝐹) |
| 5 | filunibas 23784 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → ∪ 𝐹 = 𝑋) | |
| 6 | 1, 5 | syl 17 | . . . . . . 7 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∪ 𝐹 = 𝑋) |
| 7 | 4, 6 | sseqtrd 3974 | . . . . . 6 ⊢ (𝐹 ∈ (UFil‘𝑋) → ∩ 𝐹 ⊆ 𝑋) |
| 8 | 7 | sseld 3936 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 → 𝑥 ∈ 𝑋)) |
| 9 | 8 | pm4.71rd 562 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹))) |
| 10 | uffixfr 23826 | . . . . 5 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
| 11 | 10 | anbi2d 630 | . . . 4 ⊢ (𝐹 ∈ (UFil‘𝑋) → ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ ∩ 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 12 | 9, 11 | bitrd 279 | . . 3 ⊢ (𝐹 ∈ (UFil‘𝑋) → (𝑥 ∈ ∩ 𝐹 ↔ (𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 13 | 12 | exbidv 1921 | . 2 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∃𝑥 𝑥 ∈ ∩ 𝐹 ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦}))) |
| 14 | n0 4306 | . 2 ⊢ (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ ∩ 𝐹) | |
| 15 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦} ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) | |
| 16 | 13, 14, 15 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 ≠ ∅ ↔ ∃𝑥 ∈ 𝑋 𝐹 = {𝑦 ∈ 𝒫 𝑋 ∣ 𝑥 ∈ 𝑦})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 ∪ cuni 4861 ∩ cint 4899 ‘cfv 6486 Filcfil 23748 UFilcufil 23802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-fbas 21276 df-fg 21277 df-fil 23749 df-ufil 23804 |
| This theorem is referenced by: uffinfix 23830 |
| Copyright terms: Public domain | W3C validator |