Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgreqve Structured version   Visualization version   GIF version

Theorem isomgreqve 42561
Description: A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgreqve (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)

Proof of Theorem isomgreqve
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6452 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐵) ∈ V)
21resiexd 6741 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)) ∈ V)
3 f1oi 6419 . . . . 5 ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)
4 simprl 787 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐴) = (Vtx‘𝐵))
54f1oeq2d 6378 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)))
63, 5mpbiri 250 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵))
7 fvexd 6452 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐵) ∈ V)
87dmexd 7365 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐵) ∈ V)
98resiexd 6741 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)) ∈ V)
10 f1oi 6419 . . . . . . 7 ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)
11 simprr 789 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐴) = (iEdg‘𝐵))
1211dmeqd 5562 . . . . . . . 8 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
1312f1oeq2d 6378 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)))
1410, 13mpbiri 250 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵))
15 eqid 2825 . . . . . . . . . . . 12 (Vtx‘𝐴) = (Vtx‘𝐴)
16 eqid 2825 . . . . . . . . . . . 12 (iEdg‘𝐴) = (iEdg‘𝐴)
1715, 16uhgrss 26369 . . . . . . . . . . 11 ((𝐴 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
1817ad4ant14 759 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
19 sseq2 3852 . . . . . . . . . . . . 13 ((Vtx‘𝐴) = (Vtx‘𝐵) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2019adantr 474 . . . . . . . . . . . 12 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2120adantl 475 . . . . . . . . . . 11 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2221adantr 474 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2318, 22mpbid 224 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))
24 resiima 5725 . . . . . . . . 9 (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
2523, 24syl 17 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
26 fvresi 6696 . . . . . . . . . 10 (𝑖 ∈ dom (iEdg‘𝐴) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2726adantl 475 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2827fveq2d 6441 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
29 id 22 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (iEdg‘𝐴) = (iEdg‘𝐵))
30 dmeq 5560 . . . . . . . . . . . . . 14 ((iEdg‘𝐴) = (iEdg‘𝐵) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
3130reseq2d 5633 . . . . . . . . . . . . 13 ((iEdg‘𝐴) = (iEdg‘𝐵) → ( I ↾ dom (iEdg‘𝐴)) = ( I ↾ dom (iEdg‘𝐵)))
3231fveq1d 6439 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
3329, 32fveq12d 6444 . . . . . . . . . . 11 ((iEdg‘𝐴) = (iEdg‘𝐵) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3433adantl 475 . . . . . . . . . 10 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3534adantl 475 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3635adantr 474 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3725, 28, 363eqtr2d 2867 . . . . . . 7 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3837ralrimiva 3175 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3914, 38jca 507 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
40 f1oeq1 6371 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵)))
41 fveq1 6436 . . . . . . . . 9 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
4241fveq2d 6441 . . . . . . . 8 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
4342eqeq2d 2835 . . . . . . 7 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4443ralbidv 3195 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4540, 44anbi12d 624 . . . . 5 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))))
469, 39, 45elabd 3573 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
476, 46jca 507 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
48 f1oeq1 6371 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)))
49 imaeq1 5706 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)))
5049eqeq1d 2827 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5150ralbidv 3195 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5251anbi2d 622 . . . . 5 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5352exbidv 2020 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5448, 53anbi12d 624 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ↔ (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
552, 47, 54elabd 3573 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
56 eqid 2825 . . . 4 (Vtx‘𝐵) = (Vtx‘𝐵)
57 eqid 2825 . . . 4 (iEdg‘𝐵) = (iEdg‘𝐵)
5815, 56, 16, 57isomgr 42559 . . 3 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
5958adantr 474 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
6055, 59mpbird 249 1 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wex 1878  wcel 2164  wral 3117  Vcvv 3414  wss 3798   class class class wbr 4875   I cid 5251  dom cdm 5346  cres 5348  cima 5349  1-1-ontowf1o 6126  cfv 6127  Vtxcvtx 26301  iEdgciedg 26302  UHGraphcuhgr 26361   IsomGr cisomgr 42555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-uhgr 26363  df-isomgr 42557
This theorem is referenced by:  isomgrref  42571  strisomgrop  42576
  Copyright terms: Public domain W3C validator