Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . . 4
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐵) ∈ V) |
2 | 1 | resiexd 7074 |
. . 3
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)) ∈ V) |
3 | | f1oi 6737 |
. . . . 5
⊢ ( I
↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵) |
4 | | simprl 767 |
. . . . . 6
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐴) = (Vtx‘𝐵)) |
5 | 4 | f1oeq2d 6696 |
. . . . 5
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵))) |
6 | 3, 5 | mpbiri 257 |
. . . 4
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)) |
7 | | fvexd 6771 |
. . . . . . 7
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐵) ∈ V) |
8 | 7 | dmexd 7726 |
. . . . . 6
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐵) ∈ V) |
9 | 8 | resiexd 7074 |
. . . . 5
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)) ∈ V) |
10 | | f1oi 6737 |
. . . . . . 7
⊢ ( I
↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵) |
11 | | simprr 769 |
. . . . . . . . 9
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐴) = (iEdg‘𝐵)) |
12 | 11 | dmeqd 5803 |
. . . . . . . 8
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵)) |
13 | 12 | f1oeq2d 6696 |
. . . . . . 7
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom
(iEdg‘𝐵)):dom
(iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐵))) |
14 | 10, 13 | mpbiri 257 |
. . . . . 6
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵)) |
15 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Vtx‘𝐴) =
(Vtx‘𝐴) |
16 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(iEdg‘𝐴) =
(iEdg‘𝐴) |
17 | 15, 16 | uhgrss 27337 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴)) |
18 | 17 | ad4ant14 748 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴)) |
19 | | sseq2 3943 |
. . . . . . . . . . . . 13
⊢
((Vtx‘𝐴) =
(Vtx‘𝐵) →
(((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))) |
20 | 19 | adantr 480 |
. . . . . . . . . . . 12
⊢
(((Vtx‘𝐴) =
(Vtx‘𝐵) ∧
(iEdg‘𝐴) =
(iEdg‘𝐵)) →
(((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))) |
21 | 20 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))) |
22 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))) |
23 | 18, 22 | mpbid 231 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)) |
24 | | resiima 5973 |
. . . . . . . . 9
⊢
(((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖)) |
25 | 23, 24 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖)) |
26 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝑖 ∈ dom (iEdg‘𝐴) → (( I ↾ dom
(iEdg‘𝐴))‘𝑖) = 𝑖) |
27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖) |
28 | 27 | fveq2d 6760 |
. . . . . . . 8
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐴)‘𝑖)) |
29 | | id 22 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐴) =
(iEdg‘𝐵) →
(iEdg‘𝐴) =
(iEdg‘𝐵)) |
30 | | dmeq 5801 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐴) =
(iEdg‘𝐵) → dom
(iEdg‘𝐴) = dom
(iEdg‘𝐵)) |
31 | 30 | reseq2d 5880 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐴) =
(iEdg‘𝐵) → ( I
↾ dom (iEdg‘𝐴))
= ( I ↾ dom (iEdg‘𝐵))) |
32 | 31 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐴) =
(iEdg‘𝐵) → (( I
↾ dom (iEdg‘𝐴))‘𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖)) |
33 | 29, 32 | fveq12d 6763 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐴) =
(iEdg‘𝐵) →
((iEdg‘𝐴)‘(( I
↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
34 | 33 | adantl 481 |
. . . . . . . . . 10
⊢
(((Vtx‘𝐴) =
(Vtx‘𝐵) ∧
(iEdg‘𝐴) =
(iEdg‘𝐵)) →
((iEdg‘𝐴)‘(( I
↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
35 | 34 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
37 | 25, 28, 36 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
38 | 37 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
39 | 14, 38 | jca 511 |
. . . . 5
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom
(iEdg‘𝐵)):dom
(iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))) |
40 | | f1oeq1 6688 |
. . . . . 6
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) →
(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ↔ ( I
↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵))) |
41 | | fveq1 6755 |
. . . . . . . . 9
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) →
(𝑔‘𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖)) |
42 | 41 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) →
((iEdg‘𝐵)‘(𝑔‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))) |
43 | 42 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) → (((
I ↾ (Vtx‘𝐵))
“ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))) |
44 | 43 | ralbidv 3120 |
. . . . . 6
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) →
(∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))) |
45 | 40, 44 | anbi12d 630 |
. . . . 5
⊢ (𝑔 = ( I ↾ dom
(iEdg‘𝐵)) →
((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) ↔ (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom
(iEdg‘𝐵))‘𝑖))))) |
46 | 9, 39, 45 | spcedv 3527 |
. . . 4
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) |
47 | 6, 46 | jca 511 |
. . 3
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))))) |
48 | | f1oeq1 6688 |
. . . 4
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵))) |
49 | | imaeq1 5953 |
. . . . . . . 8
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖))) |
50 | 49 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) |
51 | 50 | ralbidv 3120 |
. . . . . 6
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) |
52 | 51 | anbi2d 628 |
. . . . 5
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) ↔ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))))) |
53 | 52 | exbidv 1925 |
. . . 4
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))))) |
54 | 48, 53 | anbi12d 630 |
. . 3
⊢ (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ↔ (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(( I ↾
(Vtx‘𝐵)) “
((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))))) |
55 | 2, 47, 54 | spcedv 3527 |
. 2
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))))) |
56 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐵) =
(Vtx‘𝐵) |
57 | | eqid 2738 |
. . . 4
⊢
(iEdg‘𝐵) =
(iEdg‘𝐵) |
58 | 15, 56, 16, 57 | isomgr 45163 |
. . 3
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))))) |
59 | 58 | adantr 480 |
. 2
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))))) |
60 | 55, 59 | mpbird 256 |
1
⊢ (((𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵) |