Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgreqve Structured version   Visualization version   GIF version

Theorem isomgreqve 45165
Description: A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgreqve (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)

Proof of Theorem isomgreqve
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6771 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐵) ∈ V)
21resiexd 7074 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)) ∈ V)
3 f1oi 6737 . . . . 5 ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)
4 simprl 767 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐴) = (Vtx‘𝐵))
54f1oeq2d 6696 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)))
63, 5mpbiri 257 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵))
7 fvexd 6771 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐵) ∈ V)
87dmexd 7726 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐵) ∈ V)
98resiexd 7074 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)) ∈ V)
10 f1oi 6737 . . . . . . 7 ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)
11 simprr 769 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐴) = (iEdg‘𝐵))
1211dmeqd 5803 . . . . . . . 8 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
1312f1oeq2d 6696 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)))
1410, 13mpbiri 257 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵))
15 eqid 2738 . . . . . . . . . . . 12 (Vtx‘𝐴) = (Vtx‘𝐴)
16 eqid 2738 . . . . . . . . . . . 12 (iEdg‘𝐴) = (iEdg‘𝐴)
1715, 16uhgrss 27337 . . . . . . . . . . 11 ((𝐴 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
1817ad4ant14 748 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
19 sseq2 3943 . . . . . . . . . . . . 13 ((Vtx‘𝐴) = (Vtx‘𝐵) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2019adantr 480 . . . . . . . . . . . 12 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2120adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2221adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2318, 22mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))
24 resiima 5973 . . . . . . . . 9 (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
2523, 24syl 17 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
26 fvresi 7027 . . . . . . . . . 10 (𝑖 ∈ dom (iEdg‘𝐴) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2726adantl 481 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2827fveq2d 6760 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
29 id 22 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (iEdg‘𝐴) = (iEdg‘𝐵))
30 dmeq 5801 . . . . . . . . . . . . . 14 ((iEdg‘𝐴) = (iEdg‘𝐵) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
3130reseq2d 5880 . . . . . . . . . . . . 13 ((iEdg‘𝐴) = (iEdg‘𝐵) → ( I ↾ dom (iEdg‘𝐴)) = ( I ↾ dom (iEdg‘𝐵)))
3231fveq1d 6758 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
3329, 32fveq12d 6763 . . . . . . . . . . 11 ((iEdg‘𝐴) = (iEdg‘𝐵) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3433adantl 481 . . . . . . . . . 10 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3534adantl 481 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3635adantr 480 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3725, 28, 363eqtr2d 2784 . . . . . . 7 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3837ralrimiva 3107 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3914, 38jca 511 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
40 f1oeq1 6688 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵)))
41 fveq1 6755 . . . . . . . . 9 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
4241fveq2d 6760 . . . . . . . 8 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
4342eqeq2d 2749 . . . . . . 7 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4443ralbidv 3120 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4540, 44anbi12d 630 . . . . 5 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))))
469, 39, 45spcedv 3527 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
476, 46jca 511 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
48 f1oeq1 6688 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)))
49 imaeq1 5953 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)))
5049eqeq1d 2740 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5150ralbidv 3120 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5251anbi2d 628 . . . . 5 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5352exbidv 1925 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5448, 53anbi12d 630 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ↔ (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
552, 47, 54spcedv 3527 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
56 eqid 2738 . . . 4 (Vtx‘𝐵) = (Vtx‘𝐵)
57 eqid 2738 . . . 4 (iEdg‘𝐵) = (iEdg‘𝐵)
5815, 56, 16, 57isomgr 45163 . . 3 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
5958adantr 480 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
6055, 59mpbird 256 1 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070   I cid 5479  dom cdm 5580  cres 5582  cima 5583  1-1-ontowf1o 6417  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270  UHGraphcuhgr 27329   IsomGr cisomgr 45159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-uhgr 27331  df-isomgr 45161
This theorem is referenced by:  isomgrref  45175  strisomgrop  45180
  Copyright terms: Public domain W3C validator