Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgreqve Structured version   Visualization version   GIF version

Theorem isomgreqve 45277
Description: A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgreqve (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)

Proof of Theorem isomgreqve
Dummy variables 𝑓 𝑔 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐵) ∈ V)
21resiexd 7092 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)) ∈ V)
3 f1oi 6754 . . . . 5 ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)
4 simprl 768 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (Vtx‘𝐴) = (Vtx‘𝐵))
54f1oeq2d 6712 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐵)))
63, 5mpbiri 257 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵))
7 fvexd 6789 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐵) ∈ V)
87dmexd 7752 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐵) ∈ V)
98resiexd 7092 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)) ∈ V)
10 f1oi 6754 . . . . . . 7 ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)
11 simprr 770 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (iEdg‘𝐴) = (iEdg‘𝐵))
1211dmeqd 5814 . . . . . . . 8 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
1312f1oeq2d 6712 . . . . . . 7 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐵)))
1410, 13mpbiri 257 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵))
15 eqid 2738 . . . . . . . . . . . 12 (Vtx‘𝐴) = (Vtx‘𝐴)
16 eqid 2738 . . . . . . . . . . . 12 (iEdg‘𝐴) = (iEdg‘𝐴)
1715, 16uhgrss 27434 . . . . . . . . . . 11 ((𝐴 ∈ UHGraph ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
1817ad4ant14 749 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴))
19 sseq2 3947 . . . . . . . . . . . . 13 ((Vtx‘𝐴) = (Vtx‘𝐵) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2019adantr 481 . . . . . . . . . . . 12 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2120adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2221adantr 481 . . . . . . . . . 10 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐴) ↔ ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵)))
2318, 22mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵))
24 resiima 5984 . . . . . . . . 9 (((iEdg‘𝐴)‘𝑖) ⊆ (Vtx‘𝐵) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
2523, 24syl 17 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
26 fvresi 7045 . . . . . . . . . 10 (𝑖 ∈ dom (iEdg‘𝐴) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2726adantl 482 . . . . . . . . 9 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = 𝑖)
2827fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐴)‘𝑖))
29 id 22 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (iEdg‘𝐴) = (iEdg‘𝐵))
30 dmeq 5812 . . . . . . . . . . . . . 14 ((iEdg‘𝐴) = (iEdg‘𝐵) → dom (iEdg‘𝐴) = dom (iEdg‘𝐵))
3130reseq2d 5891 . . . . . . . . . . . . 13 ((iEdg‘𝐴) = (iEdg‘𝐵) → ( I ↾ dom (iEdg‘𝐴)) = ( I ↾ dom (iEdg‘𝐵)))
3231fveq1d 6776 . . . . . . . . . . . 12 ((iEdg‘𝐴) = (iEdg‘𝐵) → (( I ↾ dom (iEdg‘𝐴))‘𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
3329, 32fveq12d 6781 . . . . . . . . . . 11 ((iEdg‘𝐴) = (iEdg‘𝐵) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3433adantl 482 . . . . . . . . . 10 (((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3534adantl 482 . . . . . . . . 9 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3635adantr 481 . . . . . . . 8 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐴)‘(( I ↾ dom (iEdg‘𝐴))‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3725, 28, 363eqtr2d 2784 . . . . . . 7 ((((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) ∧ 𝑖 ∈ dom (iEdg‘𝐴)) → (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3837ralrimiva 3103 . . . . . 6 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
3914, 38jca 512 . . . . 5 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
40 f1oeq1 6704 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ↔ ( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵)))
41 fveq1 6773 . . . . . . . . 9 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (𝑔𝑖) = (( I ↾ dom (iEdg‘𝐵))‘𝑖))
4241fveq2d 6778 . . . . . . . 8 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))
4342eqeq2d 2749 . . . . . . 7 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4443ralbidv 3112 . . . . . 6 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖))))
4540, 44anbi12d 631 . . . . 5 (𝑔 = ( I ↾ dom (iEdg‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (( I ↾ dom (iEdg‘𝐵)):dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(( I ↾ dom (iEdg‘𝐵))‘𝑖)))))
469, 39, 45spcedv 3537 . . . 4 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
476, 46jca 512 . . 3 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
48 f1oeq1 6704 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ↔ ( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵)))
49 imaeq1 5964 . . . . . . . 8 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)))
5049eqeq1d 2740 . . . . . . 7 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5150ralbidv 3112 . . . . . 6 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))
5251anbi2d 629 . . . . 5 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5352exbidv 1924 . . . 4 (𝑓 = ( I ↾ (Vtx‘𝐵)) → (∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
5448, 53anbi12d 631 . . 3 (𝑓 = ( I ↾ (Vtx‘𝐵)) → ((𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ↔ (( I ↾ (Vtx‘𝐵)):(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(( I ↾ (Vtx‘𝐵)) “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
552, 47, 54spcedv 3537 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))))
56 eqid 2738 . . . 4 (Vtx‘𝐵) = (Vtx‘𝐵)
57 eqid 2738 . . . 4 (iEdg‘𝐵) = (iEdg‘𝐵)
5815, 56, 16, 57isomgr 45275 . . 3 ((𝐴 ∈ UHGraph ∧ 𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
5958adantr 481 . 2 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ ∃𝑔(𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))))))
6055, 59mpbird 256 1 (((𝐴 ∈ UHGraph ∧ 𝐵𝑌) ∧ ((Vtx‘𝐴) = (Vtx‘𝐵) ∧ (iEdg‘𝐴) = (iEdg‘𝐵))) → 𝐴 IsomGr 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  Vcvv 3432  wss 3887   class class class wbr 5074   I cid 5488  dom cdm 5589  cres 5591  cima 5592  1-1-ontowf1o 6432  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426   IsomGr cisomgr 45271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-uhgr 27428  df-isomgr 45273
This theorem is referenced by:  isomgrref  45287  strisomgrop  45292
  Copyright terms: Public domain W3C validator