Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgreqve Structured version   Visualization version   GIF version

Theorem isomgreqve 46479
Description: A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgreqve (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ š“ IsomGr šµ)

Proof of Theorem isomgreqve
Dummy variables š‘“ š‘” š‘– are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6903 . . . 4 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (Vtxā€˜šµ) āˆˆ V)
21resiexd 7214 . . 3 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ ( I ā†¾ (Vtxā€˜šµ)) āˆˆ V)
3 f1oi 6868 . . . . 5 ( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜šµ)ā€“1-1-ontoā†’(Vtxā€˜šµ)
4 simprl 769 . . . . . 6 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (Vtxā€˜š“) = (Vtxā€˜šµ))
54f1oeq2d 6826 . . . . 5 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) ā†” ( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜šµ)ā€“1-1-ontoā†’(Vtxā€˜šµ)))
63, 5mpbiri 257 . . . 4 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ ( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ))
7 fvexd 6903 . . . . . . 7 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (iEdgā€˜šµ) āˆˆ V)
87dmexd 7892 . . . . . 6 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ dom (iEdgā€˜šµ) āˆˆ V)
98resiexd 7214 . . . . 5 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ ( I ā†¾ dom (iEdgā€˜šµ)) āˆˆ V)
10 f1oi 6868 . . . . . . 7 ( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜šµ)ā€“1-1-ontoā†’dom (iEdgā€˜šµ)
11 simprr 771 . . . . . . . . 9 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (iEdgā€˜š“) = (iEdgā€˜šµ))
1211dmeqd 5903 . . . . . . . 8 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ dom (iEdgā€˜š“) = dom (iEdgā€˜šµ))
1312f1oeq2d 6826 . . . . . . 7 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) ā†” ( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜šµ)ā€“1-1-ontoā†’dom (iEdgā€˜šµ)))
1410, 13mpbiri 257 . . . . . 6 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ ( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ))
15 eqid 2732 . . . . . . . . . . . 12 (Vtxā€˜š“) = (Vtxā€˜š“)
16 eqid 2732 . . . . . . . . . . . 12 (iEdgā€˜š“) = (iEdgā€˜š“)
1715, 16uhgrss 28313 . . . . . . . . . . 11 ((š“ āˆˆ UHGraph āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“))
1817ad4ant14 750 . . . . . . . . . 10 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“))
19 sseq2 4007 . . . . . . . . . . . . 13 ((Vtxā€˜š“) = (Vtxā€˜šµ) ā†’ (((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“) ā†” ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ)))
2019adantr 481 . . . . . . . . . . . 12 (((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ)) ā†’ (((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“) ā†” ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ)))
2120adantl 482 . . . . . . . . . . 11 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“) ā†” ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ)))
2221adantr 481 . . . . . . . . . 10 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ (((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜š“) ā†” ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ)))
2318, 22mpbid 231 . . . . . . . . 9 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ ((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ))
24 resiima 6072 . . . . . . . . 9 (((iEdgā€˜š“)ā€˜š‘–) āŠ† (Vtxā€˜šµ) ā†’ (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜š“)ā€˜š‘–))
2523, 24syl 17 . . . . . . . 8 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜š“)ā€˜š‘–))
26 fvresi 7167 . . . . . . . . . 10 (š‘– āˆˆ dom (iEdgā€˜š“) ā†’ (( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–) = š‘–)
2726adantl 482 . . . . . . . . 9 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ (( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–) = š‘–)
2827fveq2d 6892 . . . . . . . 8 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ ((iEdgā€˜š“)ā€˜(( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–)) = ((iEdgā€˜š“)ā€˜š‘–))
29 id 22 . . . . . . . . . . . 12 ((iEdgā€˜š“) = (iEdgā€˜šµ) ā†’ (iEdgā€˜š“) = (iEdgā€˜šµ))
30 dmeq 5901 . . . . . . . . . . . . . 14 ((iEdgā€˜š“) = (iEdgā€˜šµ) ā†’ dom (iEdgā€˜š“) = dom (iEdgā€˜šµ))
3130reseq2d 5979 . . . . . . . . . . . . 13 ((iEdgā€˜š“) = (iEdgā€˜šµ) ā†’ ( I ā†¾ dom (iEdgā€˜š“)) = ( I ā†¾ dom (iEdgā€˜šµ)))
3231fveq1d 6890 . . . . . . . . . . . 12 ((iEdgā€˜š“) = (iEdgā€˜šµ) ā†’ (( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–) = (( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–))
3329, 32fveq12d 6895 . . . . . . . . . . 11 ((iEdgā€˜š“) = (iEdgā€˜šµ) ā†’ ((iEdgā€˜š“)ā€˜(( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3433adantl 482 . . . . . . . . . 10 (((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ)) ā†’ ((iEdgā€˜š“)ā€˜(( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3534adantl 482 . . . . . . . . 9 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ ((iEdgā€˜š“)ā€˜(( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3635adantr 481 . . . . . . . 8 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ ((iEdgā€˜š“)ā€˜(( I ā†¾ dom (iEdgā€˜š“))ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3725, 28, 363eqtr2d 2778 . . . . . . 7 ((((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) āˆ§ š‘– āˆˆ dom (iEdgā€˜š“)) ā†’ (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3837ralrimiva 3146 . . . . . 6 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
3914, 38jca 512 . . . . 5 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–))))
40 f1oeq1 6818 . . . . . 6 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ (š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) ā†” ( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ)))
41 fveq1 6887 . . . . . . . . 9 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ (š‘”ā€˜š‘–) = (( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–))
4241fveq2d 6892 . . . . . . . 8 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))
4342eqeq2d 2743 . . . . . . 7 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ ((( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)) ā†” (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–))))
4443ralbidv 3177 . . . . . 6 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ (āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)) ā†” āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–))))
4540, 44anbi12d 631 . . . . 5 (š‘” = ( I ā†¾ dom (iEdgā€˜šµ)) ā†’ ((š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))) ā†” (( I ā†¾ dom (iEdgā€˜šµ)):dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(( I ā†¾ dom (iEdgā€˜šµ))ā€˜š‘–)))))
469, 39, 45spcedv 3588 . . . 4 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))
476, 46jca 512 . . 3 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)))))
48 f1oeq1 6818 . . . 4 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ (š‘“:(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) ā†” ( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ)))
49 imaeq1 6052 . . . . . . . 8 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ (š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)))
5049eqeq1d 2734 . . . . . . 7 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ ((š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)) ā†” (( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))
5150ralbidv 3177 . . . . . 6 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ (āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)) ā†” āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))
5251anbi2d 629 . . . . 5 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ ((š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))) ā†” (š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)))))
5352exbidv 1924 . . . 4 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ (āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))) ā†” āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)))))
5448, 53anbi12d 631 . . 3 (š‘“ = ( I ā†¾ (Vtxā€˜šµ)) ā†’ ((š‘“:(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)))) ā†” (( I ā†¾ (Vtxā€˜šµ)):(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(( I ā†¾ (Vtxā€˜šµ)) ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))))
552, 47, 54spcedv 3588 . 2 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ āˆƒš‘“(š‘“:(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–)))))
56 eqid 2732 . . . 4 (Vtxā€˜šµ) = (Vtxā€˜šµ)
57 eqid 2732 . . . 4 (iEdgā€˜šµ) = (iEdgā€˜šµ)
5815, 56, 16, 57isomgr 46477 . . 3 ((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) ā†’ (š“ IsomGr šµ ā†” āˆƒš‘“(š‘“:(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))))
5958adantr 481 . 2 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ (š“ IsomGr šµ ā†” āˆƒš‘“(š‘“:(Vtxā€˜š“)ā€“1-1-ontoā†’(Vtxā€˜šµ) āˆ§ āˆƒš‘”(š‘”:dom (iEdgā€˜š“)ā€“1-1-ontoā†’dom (iEdgā€˜šµ) āˆ§ āˆ€š‘– āˆˆ dom (iEdgā€˜š“)(š‘“ ā€œ ((iEdgā€˜š“)ā€˜š‘–)) = ((iEdgā€˜šµ)ā€˜(š‘”ā€˜š‘–))))))
6055, 59mpbird 256 1 (((š“ āˆˆ UHGraph āˆ§ šµ āˆˆ š‘Œ) āˆ§ ((Vtxā€˜š“) = (Vtxā€˜šµ) āˆ§ (iEdgā€˜š“) = (iEdgā€˜šµ))) ā†’ š“ IsomGr šµ)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396   = wceq 1541  āˆƒwex 1781   āˆˆ wcel 2106  āˆ€wral 3061  Vcvv 3474   āŠ† wss 3947   class class class wbr 5147   I cid 5572  dom cdm 5675   ā†¾ cres 5677   ā€œ cima 5678  ā€“1-1-ontoā†’wf1o 6539  ā€˜cfv 6540  Vtxcvtx 28245  iEdgciedg 28246  UHGraphcuhgr 28305   IsomGr cisomgr 46473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-uhgr 28307  df-isomgr 46475
This theorem is referenced by:  isomgrref  46489  strisomgrop  46494
  Copyright terms: Public domain W3C validator