| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp1cvr | Structured version Visualization version GIF version | ||
| Description: The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhp1cvr.u | ⊢ 1 = (1.‘𝐾) |
| lhp1cvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhp1cvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhp1cvr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | lhp1cvr.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | lhp1cvr.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | lhp1cvr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | islhp 40015 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 ))) |
| 6 | 5 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 1.cp1 18434 ⋖ ccvr 39280 LHypclh 40003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-lhyp 40007 |
| This theorem is referenced by: lhplt 40019 lhp2lt 40020 lhpexlt 40021 lhpexnle 40025 lhpjat1 40039 lhpmcvr 40042 cdlemb2 40060 lhpat 40062 dih1 41305 |
| Copyright terms: Public domain | W3C validator |