![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp1cvr | Structured version Visualization version GIF version |
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhp1cvr.u | ⊢ 1 = (1.‘𝐾) |
lhp1cvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhp1cvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhp1cvr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | lhp1cvr.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | lhp1cvr.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhp1cvr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | islhp 36577 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 ))) |
6 | 5 | simplbda 492 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4930 ‘cfv 6190 Basecbs 16342 1.cp1 17509 ⋖ ccvr 35843 LHypclh 36565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pr 5187 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-iota 6154 df-fun 6192 df-fv 6198 df-lhyp 36569 |
This theorem is referenced by: lhplt 36581 lhp2lt 36582 lhpexlt 36583 lhpexnle 36587 lhpjat1 36601 lhpmcvr 36604 cdlemb2 36622 lhpat 36624 dih1 37867 |
Copyright terms: Public domain | W3C validator |