Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp1cvr Structured version   Visualization version   GIF version

Theorem lhp1cvr 39173
Description: The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhp1cvr.u 1 = (1.‘𝐾)
lhp1cvr.c 𝐶 = ( ⋖ ‘𝐾)
lhp1cvr.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp1cvr ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )

Proof of Theorem lhp1cvr
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 lhp1cvr.u . . 3 1 = (1.‘𝐾)
3 lhp1cvr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhp1cvr.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 39170 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 )))
65simplbda 498 1 ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104   class class class wbr 5147  cfv 6542  Basecbs 17148  1.cp1 18381  ccvr 38435  LHypclh 39158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-lhyp 39162
This theorem is referenced by:  lhplt  39174  lhp2lt  39175  lhpexlt  39176  lhpexnle  39180  lhpjat1  39194  lhpmcvr  39197  cdlemb2  39215  lhpat  39217  dih1  40460
  Copyright terms: Public domain W3C validator