| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp1cvr | Structured version Visualization version GIF version | ||
| Description: The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhp1cvr.u | ⊢ 1 = (1.‘𝐾) |
| lhp1cvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhp1cvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhp1cvr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | lhp1cvr.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | lhp1cvr.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | lhp1cvr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | islhp 39997 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 ))) |
| 6 | 5 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 1.cp1 18390 ⋖ ccvr 39262 LHypclh 39985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-lhyp 39989 |
| This theorem is referenced by: lhplt 40001 lhp2lt 40002 lhpexlt 40003 lhpexnle 40007 lhpjat1 40021 lhpmcvr 40024 cdlemb2 40042 lhpat 40044 dih1 41287 |
| Copyright terms: Public domain | W3C validator |