Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp1cvr | Structured version Visualization version GIF version |
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhp1cvr.u | ⊢ 1 = (1.‘𝐾) |
lhp1cvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhp1cvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhp1cvr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | lhp1cvr.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
3 | lhp1cvr.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | lhp1cvr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | 1, 2, 3, 4 | islhp 38010 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 ))) |
6 | 5 | simplbda 500 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 1.cp1 18142 ⋖ ccvr 37276 LHypclh 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-lhyp 38002 |
This theorem is referenced by: lhplt 38014 lhp2lt 38015 lhpexlt 38016 lhpexnle 38020 lhpjat1 38034 lhpmcvr 38037 cdlemb2 38055 lhpat 38057 dih1 39300 |
Copyright terms: Public domain | W3C validator |