| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhp1cvr | Structured version Visualization version GIF version | ||
| Description: The lattice unity covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhp1cvr.u | ⊢ 1 = (1.‘𝐾) |
| lhp1cvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lhp1cvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhp1cvr | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | lhp1cvr.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 3 | lhp1cvr.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 4 | lhp1cvr.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | 1, 2, 3, 4 | islhp 40035 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑊 ∈ 𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 ))) |
| 6 | 5 | simplbda 499 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 1.cp1 18323 ⋖ ccvr 39301 LHypclh 40023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-lhyp 40027 |
| This theorem is referenced by: lhplt 40039 lhp2lt 40040 lhpexlt 40041 lhpexnle 40045 lhpjat1 40059 lhpmcvr 40062 cdlemb2 40080 lhpat 40082 dih1 41325 |
| Copyright terms: Public domain | W3C validator |