Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhp1cvr Structured version   Visualization version   GIF version

Theorem lhp1cvr 38013
Description: The lattice unit covers a co-atom (lattice hyperplane). (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
lhp1cvr.u 1 = (1.‘𝐾)
lhp1cvr.c 𝐶 = ( ⋖ ‘𝐾)
lhp1cvr.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhp1cvr ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )

Proof of Theorem lhp1cvr
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 lhp1cvr.u . . 3 1 = (1.‘𝐾)
3 lhp1cvr.c . . 3 𝐶 = ( ⋖ ‘𝐾)
4 lhp1cvr.h . . 3 𝐻 = (LHyp‘𝐾)
51, 2, 3, 4islhp 38010 . 2 (𝐾𝐴 → (𝑊𝐻 ↔ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊𝐶 1 )))
65simplbda 500 1 ((𝐾𝐴𝑊𝐻) → 𝑊𝐶 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  1.cp1 18142  ccvr 37276  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-lhyp 38002
This theorem is referenced by:  lhplt  38014  lhp2lt  38015  lhpexlt  38016  lhpexnle  38020  lhpjat1  38034  lhpmcvr  38037  cdlemb2  38055  lhpat  38057  dih1  39300
  Copyright terms: Public domain W3C validator