Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln Structured version   Visualization version   GIF version

Theorem islln 38365
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐡 = (Baseβ€˜πΎ)
llnset.c 𝐢 = ( β‹– β€˜πΎ)
llnset.a 𝐴 = (Atomsβ€˜πΎ)
llnset.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
islln (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐡(𝑝)   𝐢(𝑝)   𝐷(𝑝)   𝑁(𝑝)

Proof of Theorem islln
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 llnset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 llnset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
3 llnset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 llnset.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
51, 2, 3, 4llnset 38364 . . 3 (𝐾 ∈ 𝐷 β†’ 𝑁 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯})
65eleq2d 2819 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯}))
7 breq2 5151 . . . 4 (π‘₯ = 𝑋 β†’ (𝑝𝐢π‘₯ ↔ 𝑝𝐢𝑋))
87rexbidv 3178 . . 3 (π‘₯ = 𝑋 β†’ (βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯ ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
98elrab 3682 . 2 (𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘ ∈ 𝐴 𝑝𝐢π‘₯} ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
106, 9bitrdi 286 1 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140   β‹– ccvr 38120  Atomscatm 38121  LLinesclln 38350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-llines 38357
This theorem is referenced by:  islln4  38366  llni  38367  llnbase  38368  llnnleat  38372
  Copyright terms: Public domain W3C validator