Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln Structured version   Visualization version   GIF version

Theorem islln 39625
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝐶(𝑝)   𝐷(𝑝)   𝑁(𝑝)

Proof of Theorem islln
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 llnset.b . . . 4 𝐵 = (Base‘𝐾)
2 llnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 llnset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 llnset.n . . . 4 𝑁 = (LLines‘𝐾)
51, 2, 3, 4llnset 39624 . . 3 (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
65eleq2d 2819 . 2 (𝐾𝐷 → (𝑋𝑁𝑋 ∈ {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥}))
7 breq2 5097 . . . 4 (𝑥 = 𝑋 → (𝑝𝐶𝑥𝑝𝐶𝑋))
87rexbidv 3157 . . 3 (𝑥 = 𝑋 → (∃𝑝𝐴 𝑝𝐶𝑥 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
98elrab 3643 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋))
106, 9bitrdi 287 1 (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396   class class class wbr 5093  cfv 6486  Basecbs 17122  ccvr 39381  Atomscatm 39382  LLinesclln 39610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-llines 39617
This theorem is referenced by:  islln4  39626  llni  39627  llnbase  39628  llnnleat  39632
  Copyright terms: Public domain W3C validator