![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
5 | 1, 2, 3, 4 | llnset 39488 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
6 | 5 | eleq2d 2825 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥})) |
7 | breq2 5152 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑝𝐶𝑥 ↔ 𝑝𝐶𝑋)) | |
8 | 7 | rexbidv 3177 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑝 ∈ 𝐴 𝑝𝐶𝑥 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
9 | 8 | elrab 3695 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 class class class wbr 5148 ‘cfv 6563 Basecbs 17245 ⋖ ccvr 39244 Atomscatm 39245 LLinesclln 39474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-llines 39481 |
This theorem is referenced by: islln4 39490 llni 39491 llnbase 39492 llnnleat 39496 |
Copyright terms: Public domain | W3C validator |