![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln | ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
5 | 1, 2, 3, 4 | llnset 39462 | . . 3 ⊢ (𝐾 ∈ 𝐷 → 𝑁 = {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥}) |
6 | 5 | eleq2d 2830 | . 2 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥})) |
7 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑝𝐶𝑥 ↔ 𝑝𝐶𝑋)) | |
8 | 7 | rexbidv 3185 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑝 ∈ 𝐴 𝑝𝐶𝑥 ↔ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
9 | 8 | elrab 3708 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋)) |
10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 ⋖ ccvr 39218 Atomscatm 39219 LLinesclln 39448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-llines 39455 |
This theorem is referenced by: islln4 39464 llni 39465 llnbase 39466 llnnleat 39470 |
Copyright terms: Public domain | W3C validator |