Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln Structured version   Visualization version   GIF version

Theorem islln 39507
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝐶(𝑝)   𝐷(𝑝)   𝑁(𝑝)

Proof of Theorem islln
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 llnset.b . . . 4 𝐵 = (Base‘𝐾)
2 llnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 llnset.a . . . 4 𝐴 = (Atoms‘𝐾)
4 llnset.n . . . 4 𝑁 = (LLines‘𝐾)
51, 2, 3, 4llnset 39506 . . 3 (𝐾𝐷𝑁 = {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥})
65eleq2d 2815 . 2 (𝐾𝐷 → (𝑋𝑁𝑋 ∈ {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥}))
7 breq2 5114 . . . 4 (𝑥 = 𝑋 → (𝑝𝐶𝑥𝑝𝐶𝑋))
87rexbidv 3158 . . 3 (𝑥 = 𝑋 → (∃𝑝𝐴 𝑝𝐶𝑥 ↔ ∃𝑝𝐴 𝑝𝐶𝑋))
98elrab 3662 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑝𝐴 𝑝𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋))
106, 9bitrdi 287 1 (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408   class class class wbr 5110  cfv 6514  Basecbs 17186  ccvr 39262  Atomscatm 39263  LLinesclln 39492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-llines 39499
This theorem is referenced by:  islln4  39508  llni  39509  llnbase  39510  llnnleat  39514
  Copyright terms: Public domain W3C validator