![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | β’ π΅ = (BaseβπΎ) |
llnset.c | β’ πΆ = ( β βπΎ) |
llnset.a | β’ π΄ = (AtomsβπΎ) |
llnset.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
islln | β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | llnset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
3 | llnset.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | llnset.n | . . . 4 β’ π = (LLinesβπΎ) | |
5 | 1, 2, 3, 4 | llnset 38364 | . . 3 β’ (πΎ β π· β π = {π₯ β π΅ β£ βπ β π΄ ππΆπ₯}) |
6 | 5 | eleq2d 2819 | . 2 β’ (πΎ β π· β (π β π β π β {π₯ β π΅ β£ βπ β π΄ ππΆπ₯})) |
7 | breq2 5151 | . . . 4 β’ (π₯ = π β (ππΆπ₯ β ππΆπ)) | |
8 | 7 | rexbidv 3178 | . . 3 β’ (π₯ = π β (βπ β π΄ ππΆπ₯ β βπ β π΄ ππΆπ)) |
9 | 8 | elrab 3682 | . 2 β’ (π β {π₯ β π΅ β£ βπ β π΄ ππΆπ₯} β (π β π΅ β§ βπ β π΄ ππΆπ)) |
10 | 6, 9 | bitrdi 286 | 1 β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 class class class wbr 5147 βcfv 6540 Basecbs 17140 β ccvr 38120 Atomscatm 38121 LLinesclln 38350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-llines 38357 |
This theorem is referenced by: islln4 38366 llni 38367 llnbase 38368 llnnleat 38372 |
Copyright terms: Public domain | W3C validator |