Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version |
Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
3 | 2 | eqeq1i 2743 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
4 | 1, 3 | sylnib 327 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
5 | fvprc 6748 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2738 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
10 | 7, 8, 9, 2 | islln 37447 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 684 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 ⋖ ccvr 37203 Atomscatm 37204 LLinesclln 37432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-llines 37439 |
This theorem is referenced by: islln2 37452 llnnleat 37454 llnneat 37455 atcvrlln2 37460 llnexatN 37462 llncmp 37463 2llnmat 37465 islpln3 37474 llnmlplnN 37480 lplnle 37481 lplnnle2at 37482 llncvrlpln2 37498 llncvrlpln 37499 2llnmj 37501 lplncmp 37503 lplnexatN 37504 lplnexllnN 37505 2llnm2N 37509 2llnm3N 37510 2llnm4 37511 2llnmeqat 37512 dalem21 37635 dalem54 37667 dalem55 37668 dalem57 37670 dalem60 37673 llnexchb2lem 37809 llnexchb2 37810 llnexch2N 37811 |
Copyright terms: Public domain | W3C validator |