| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version | ||
| Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4306 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
| 2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 2 | eqeq1i 2735 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
| 5 | fvprc 6853 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
| 7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2730 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 10 | 7, 8, 9, 2 | islln 39507 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 Vcvv 3450 ∅c0 4299 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 ⋖ ccvr 39262 Atomscatm 39263 LLinesclln 39492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-llines 39499 |
| This theorem is referenced by: islln2 39512 llnnleat 39514 llnneat 39515 atcvrlln2 39520 llnexatN 39522 llncmp 39523 2llnmat 39525 islpln3 39534 llnmlplnN 39540 lplnle 39541 lplnnle2at 39542 llncvrlpln2 39558 llncvrlpln 39559 2llnmj 39561 lplncmp 39563 lplnexatN 39564 lplnexllnN 39565 2llnm2N 39569 2llnm3N 39570 2llnm4 39571 2llnmeqat 39572 dalem21 39695 dalem54 39727 dalem55 39728 dalem57 39730 dalem60 39733 llnexchb2lem 39869 llnexchb2 39870 llnexch2N 39871 |
| Copyright terms: Public domain | W3C validator |