| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version | ||
| Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
| 2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 2 | eqeq1i 2738 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
| 5 | fvprc 6823 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
| 7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2733 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2733 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 10 | 7, 8, 9, 2 | islln 39678 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∅c0 4282 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 ⋖ ccvr 39434 Atomscatm 39435 LLinesclln 39663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-llines 39670 |
| This theorem is referenced by: islln2 39683 llnnleat 39685 llnneat 39686 atcvrlln2 39691 llnexatN 39693 llncmp 39694 2llnmat 39696 islpln3 39705 llnmlplnN 39711 lplnle 39712 lplnnle2at 39713 llncvrlpln2 39729 llncvrlpln 39730 2llnmj 39732 lplncmp 39734 lplnexatN 39735 lplnexllnN 39736 2llnm2N 39740 2llnm3N 39741 2llnm4 39742 2llnmeqat 39743 dalem21 39866 dalem54 39898 dalem55 39899 dalem57 39901 dalem60 39904 llnexchb2lem 40040 llnexchb2 40041 llnexch2N 40042 |
| Copyright terms: Public domain | W3C validator |