| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version | ||
| Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
| 2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 2 | eqeq1i 2734 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
| 5 | fvprc 6818 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
| 7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2729 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 10 | 7, 8, 9, 2 | islln 39505 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 Basecbs 17139 ⋖ ccvr 39260 Atomscatm 39261 LLinesclln 39490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-llines 39497 |
| This theorem is referenced by: islln2 39510 llnnleat 39512 llnneat 39513 atcvrlln2 39518 llnexatN 39520 llncmp 39521 2llnmat 39523 islpln3 39532 llnmlplnN 39538 lplnle 39539 lplnnle2at 39540 llncvrlpln2 39556 llncvrlpln 39557 2llnmj 39559 lplncmp 39561 lplnexatN 39562 lplnexllnN 39563 2llnm2N 39567 2llnm3N 39568 2llnm4 39569 2llnmeqat 39570 dalem21 39693 dalem54 39725 dalem55 39726 dalem57 39728 dalem60 39731 llnexchb2lem 39867 llnexchb2 39868 llnexch2N 39869 |
| Copyright terms: Public domain | W3C validator |