![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version |
Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4225 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
3 | 2 | eqeq1i 2802 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
4 | 1, 3 | sylnib 329 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
5 | fvprc 6538 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 143 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2797 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2797 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
10 | 7, 8, 9, 2 | islln 36194 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 499 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 684 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 Vcvv 3440 ∅c0 4217 class class class wbr 4968 ‘cfv 6232 Basecbs 16316 ⋖ ccvr 35950 Atomscatm 35951 LLinesclln 36179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fv 6240 df-llines 36186 |
This theorem is referenced by: islln2 36199 llnnleat 36201 llnneat 36202 atcvrlln2 36207 llnexatN 36209 llncmp 36210 2llnmat 36212 islpln3 36221 llnmlplnN 36227 lplnle 36228 lplnnle2at 36229 llncvrlpln2 36245 llncvrlpln 36246 2llnmj 36248 lplncmp 36250 lplnexatN 36251 lplnexllnN 36252 2llnm2N 36256 2llnm3N 36257 2llnm4 36258 2llnmeqat 36259 dalem21 36382 dalem54 36414 dalem55 36415 dalem57 36417 dalem60 36420 llnexchb2lem 36556 llnexchb2 36557 llnexch2N 36558 |
Copyright terms: Public domain | W3C validator |