| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version | ||
| Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4285 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
| 2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 2 | eqeq1i 2736 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
| 5 | fvprc 6809 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
| 7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2731 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2731 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 10 | 7, 8, 9, 2 | islln 39545 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∅c0 4278 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 ⋖ ccvr 39301 Atomscatm 39302 LLinesclln 39530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-llines 39537 |
| This theorem is referenced by: islln2 39550 llnnleat 39552 llnneat 39553 atcvrlln2 39558 llnexatN 39560 llncmp 39561 2llnmat 39563 islpln3 39572 llnmlplnN 39578 lplnle 39579 lplnnle2at 39580 llncvrlpln2 39596 llncvrlpln 39597 2llnmj 39599 lplncmp 39601 lplnexatN 39602 lplnexllnN 39603 2llnm2N 39607 2llnm3N 39608 2llnm4 39609 2llnmeqat 39610 dalem21 39733 dalem54 39765 dalem55 39766 dalem57 39768 dalem60 39771 llnexchb2lem 39907 llnexchb2 39908 llnexch2N 39909 |
| Copyright terms: Public domain | W3C validator |