| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llnbase | Structured version Visualization version GIF version | ||
| Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnbase.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llnbase | ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4303 | . . . 4 ⊢ (𝑋 ∈ 𝑁 → ¬ 𝑁 = ∅) | |
| 2 | llnbase.n | . . . . 5 ⊢ 𝑁 = (LLines‘𝐾) | |
| 3 | 2 | eqeq1i 2734 | . . . 4 ⊢ (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑁 → ¬ (LLines‘𝐾) = ∅) |
| 5 | fvprc 6850 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LLines‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑁 → 𝐾 ∈ V) |
| 7 | llnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2729 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 10 | 7, 8, 9, 2 | islln 39500 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∅c0 4296 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 ⋖ ccvr 39255 Atomscatm 39256 LLinesclln 39485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-llines 39492 |
| This theorem is referenced by: islln2 39505 llnnleat 39507 llnneat 39508 atcvrlln2 39513 llnexatN 39515 llncmp 39516 2llnmat 39518 islpln3 39527 llnmlplnN 39533 lplnle 39534 lplnnle2at 39535 llncvrlpln2 39551 llncvrlpln 39552 2llnmj 39554 lplncmp 39556 lplnexatN 39557 lplnexllnN 39558 2llnm2N 39562 2llnm3N 39563 2llnm4 39564 2llnmeqat 39565 dalem21 39688 dalem54 39720 dalem55 39721 dalem57 39723 dalem60 39726 llnexchb2lem 39862 llnexchb2 39863 llnexch2N 39864 |
| Copyright terms: Public domain | W3C validator |