Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnbase Structured version   Visualization version   GIF version

Theorem llnbase 39503
Description: A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnbase.b 𝐵 = (Base‘𝐾)
llnbase.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnbase (𝑋𝑁𝑋𝐵)

Proof of Theorem llnbase
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 n0i 4303 . . . 4 (𝑋𝑁 → ¬ 𝑁 = ∅)
2 llnbase.n . . . . 5 𝑁 = (LLines‘𝐾)
32eqeq1i 2734 . . . 4 (𝑁 = ∅ ↔ (LLines‘𝐾) = ∅)
41, 3sylnib 328 . . 3 (𝑋𝑁 → ¬ (LLines‘𝐾) = ∅)
5 fvprc 6850 . . 3 𝐾 ∈ V → (LLines‘𝐾) = ∅)
64, 5nsyl2 141 . 2 (𝑋𝑁𝐾 ∈ V)
7 llnbase.b . . . 4 𝐵 = (Base‘𝐾)
8 eqid 2729 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
9 eqid 2729 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
107, 8, 9, 2islln 39500 . . 3 (𝐾 ∈ V → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝 ∈ (Atoms‘𝐾)𝑝( ⋖ ‘𝐾)𝑋)))
1110simprbda 498 . 2 ((𝐾 ∈ V ∧ 𝑋𝑁) → 𝑋𝐵)
126, 11mpancom 688 1 (𝑋𝑁𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  Basecbs 17179  ccvr 39255  Atomscatm 39256  LLinesclln 39485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-llines 39492
This theorem is referenced by:  islln2  39505  llnnleat  39507  llnneat  39508  atcvrlln2  39513  llnexatN  39515  llncmp  39516  2llnmat  39518  islpln3  39527  llnmlplnN  39533  lplnle  39534  lplnnle2at  39535  llncvrlpln2  39551  llncvrlpln  39552  2llnmj  39554  lplncmp  39556  lplnexatN  39557  lplnexllnN  39558  2llnm2N  39562  2llnm3N  39563  2llnm4  39564  2llnmeqat  39565  dalem21  39688  dalem54  39720  dalem55  39721  dalem57  39723  dalem60  39726  llnexchb2lem  39862  llnexchb2  39863  llnexch2N  39864
  Copyright terms: Public domain W3C validator