Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln4 Structured version   Visualization version   GIF version

Theorem islln4 38882
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐡 = (Baseβ€˜πΎ)
llnset.c 𝐢 = ( β‹– β€˜πΎ)
llnset.a 𝐴 = (Atomsβ€˜πΎ)
llnset.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
islln4 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐡(𝑝)   𝐢(𝑝)   𝐷(𝑝)   𝑁(𝑝)

Proof of Theorem islln4
StepHypRef Expression
1 llnset.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 llnset.c . . 3 𝐢 = ( β‹– β€˜πΎ)
3 llnset.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 llnset.n . . 3 𝑁 = (LLinesβ€˜πΎ)
51, 2, 3, 4islln 38881 . 2 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
65baibd 539 1 ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062   class class class wbr 5139  β€˜cfv 6534  Basecbs 17149   β‹– ccvr 38636  Atomscatm 38637  LLinesclln 38866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-llines 38873
This theorem is referenced by:  islln3  38885  llncmp  38897
  Copyright terms: Public domain W3C validator