![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln4 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | β’ π΅ = (BaseβπΎ) |
llnset.c | β’ πΆ = ( β βπΎ) |
llnset.a | β’ π΄ = (AtomsβπΎ) |
llnset.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
islln4 | β’ ((πΎ β π· β§ π β π΅) β (π β π β βπ β π΄ ππΆπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llnset.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | llnset.c | . . 3 β’ πΆ = ( β βπΎ) | |
3 | llnset.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | llnset.n | . . 3 β’ π = (LLinesβπΎ) | |
5 | 1, 2, 3, 4 | islln 38979 | . 2 β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) |
6 | 5 | baibd 539 | 1 β’ ((πΎ β π· β§ π β π΅) β (π β π β βπ β π΄ ππΆπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwrex 3067 class class class wbr 5148 βcfv 6548 Basecbs 17180 β ccvr 38734 Atomscatm 38735 LLinesclln 38964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-llines 38971 |
This theorem is referenced by: islln3 38983 llncmp 38995 |
Copyright terms: Public domain | W3C validator |