Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni | Structured version Visualization version GIF version |
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝐵) | |
2 | breq1 5079 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝𝐶𝑋 ↔ 𝑃𝐶𝑋)) | |
3 | 2 | rspcev 3561 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
4 | 3 | 3ad2antl3 1186 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
5 | simpl1 1190 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝐾 ∈ 𝐷) | |
6 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
10 | 6, 7, 8, 9 | islln 37517 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
12 | 1, 4, 11 | mpbir2and 710 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5076 ‘cfv 6435 Basecbs 16910 ⋖ ccvr 37273 Atomscatm 37274 LLinesclln 37502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6393 df-fun 6437 df-fv 6443 df-llines 37509 |
This theorem is referenced by: llnle 37529 atcvrlln 37531 lplncvrlvol 37627 |
Copyright terms: Public domain | W3C validator |