Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni Structured version   Visualization version   GIF version

Theorem llni 39465
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝑁)

Proof of Theorem llni
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝐵)
2 breq1 5169 . . . 4 (𝑝 = 𝑃 → (𝑝𝐶𝑋𝑃𝐶𝑋))
32rspcev 3635 . . 3 ((𝑃𝐴𝑃𝐶𝑋) → ∃𝑝𝐴 𝑝𝐶𝑋)
433ad2antl3 1187 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → ∃𝑝𝐴 𝑝𝐶𝑋)
5 simpl1 1191 . . 3 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝐾𝐷)
6 llnset.b . . . 4 𝐵 = (Base‘𝐾)
7 llnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 llnset.a . . . 4 𝐴 = (Atoms‘𝐾)
9 llnset.n . . . 4 𝑁 = (LLines‘𝐾)
106, 7, 8, 9islln 39463 . . 3 (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
115, 10syl 17 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
121, 4, 11mpbir2and 712 1 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  Basecbs 17258  ccvr 39218  Atomscatm 39219  LLinesclln 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-llines 39455
This theorem is referenced by:  llnle  39475  atcvrlln  39477  lplncvrlvol  39573
  Copyright terms: Public domain W3C validator