Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni | Structured version Visualization version GIF version |
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llni | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝐵) | |
2 | breq1 5073 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝𝐶𝑋 ↔ 𝑃𝐶𝑋)) | |
3 | 2 | rspcev 3552 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
4 | 3 | 3ad2antl3 1185 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
5 | simpl1 1189 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝐾 ∈ 𝐷) | |
6 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
10 | 6, 7, 8, 9 | islln 37447 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
12 | 1, 4, 11 | mpbir2and 709 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 ⋖ ccvr 37203 Atomscatm 37204 LLinesclln 37432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-llines 37439 |
This theorem is referenced by: llnle 37459 atcvrlln 37461 lplncvrlvol 37557 |
Copyright terms: Public domain | W3C validator |