Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni Structured version   Visualization version   GIF version

Theorem llni 36776
 Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐵 = (Base‘𝐾)
llnset.c 𝐶 = ( ⋖ ‘𝐾)
llnset.a 𝐴 = (Atoms‘𝐾)
llnset.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llni (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝑁)

Proof of Theorem llni
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝐵)
2 breq1 5056 . . . 4 (𝑝 = 𝑃 → (𝑝𝐶𝑋𝑃𝐶𝑋))
32rspcev 3609 . . 3 ((𝑃𝐴𝑃𝐶𝑋) → ∃𝑝𝐴 𝑝𝐶𝑋)
433ad2antl3 1184 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → ∃𝑝𝐴 𝑝𝐶𝑋)
5 simpl1 1188 . . 3 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝐾𝐷)
6 llnset.b . . . 4 𝐵 = (Base‘𝐾)
7 llnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 llnset.a . . . 4 𝐴 = (Atoms‘𝐾)
9 llnset.n . . . 4 𝑁 = (LLines‘𝐾)
106, 7, 8, 9islln 36774 . . 3 (𝐾𝐷 → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
115, 10syl 17 . 2 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → (𝑋𝑁 ↔ (𝑋𝐵 ∧ ∃𝑝𝐴 𝑝𝐶𝑋)))
121, 4, 11mpbir2and 712 1 (((𝐾𝐷𝑋𝐵𝑃𝐴) ∧ 𝑃𝐶𝑋) → 𝑋𝑁)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∃wrex 3134   class class class wbr 5053  ‘cfv 6345  Basecbs 16485   ⋖ ccvr 36530  Atomscatm 36531  LLinesclln 36759 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-iota 6304  df-fun 6347  df-fv 6353  df-llines 36766 This theorem is referenced by:  llnle  36786  atcvrlln  36788  lplncvrlvol  36884
 Copyright terms: Public domain W3C validator