![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > llni | Structured version Visualization version GIF version |
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
llnset.b | β’ π΅ = (BaseβπΎ) |
llnset.c | β’ πΆ = ( β βπΎ) |
llnset.a | β’ π΄ = (AtomsβπΎ) |
llnset.n | β’ π = (LLinesβπΎ) |
Ref | Expression |
---|---|
llni | β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1189 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β π β π΅) | |
2 | breq1 5142 | . . . 4 β’ (π = π β (ππΆπ β ππΆπ)) | |
3 | 2 | rspcev 3604 | . . 3 β’ ((π β π΄ β§ ππΆπ) β βπ β π΄ ππΆπ) |
4 | 3 | 3ad2antl3 1184 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β βπ β π΄ ππΆπ) |
5 | simpl1 1188 | . . 3 β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β πΎ β π·) | |
6 | llnset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
7 | llnset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
8 | llnset.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
9 | llnset.n | . . . 4 β’ π = (LLinesβπΎ) | |
10 | 6, 7, 8, 9 | islln 38871 | . . 3 β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) |
11 | 5, 10 | syl 17 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) |
12 | 1, 4, 11 | mpbir2and 710 | 1 β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βwrex 3062 class class class wbr 5139 βcfv 6534 Basecbs 17145 β ccvr 38626 Atomscatm 38627 LLinesclln 38856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-llines 38863 |
This theorem is referenced by: llnle 38883 atcvrlln 38885 lplncvrlvol 38981 |
Copyright terms: Public domain | W3C validator |