Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni Structured version   Visualization version   GIF version

Theorem llni 38873
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐡 = (Baseβ€˜πΎ)
llnset.c 𝐢 = ( β‹– β€˜πΎ)
llnset.a 𝐴 = (Atomsβ€˜πΎ)
llnset.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
llni (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝑁)

Proof of Theorem llni
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝐡)
2 breq1 5142 . . . 4 (𝑝 = 𝑃 β†’ (𝑝𝐢𝑋 ↔ 𝑃𝐢𝑋))
32rspcev 3604 . . 3 ((𝑃 ∈ 𝐴 ∧ 𝑃𝐢𝑋) β†’ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)
433ad2antl3 1184 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)
5 simpl1 1188 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝐾 ∈ 𝐷)
6 llnset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
7 llnset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
8 llnset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
9 llnset.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
106, 7, 8, 9islln 38871 . . 3 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
115, 10syl 17 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
121, 4, 11mpbir2and 710 1 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062   class class class wbr 5139  β€˜cfv 6534  Basecbs 17145   β‹– ccvr 38626  Atomscatm 38627  LLinesclln 38856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-llines 38863
This theorem is referenced by:  llnle  38883  atcvrlln  38885  lplncvrlvol  38981
  Copyright terms: Public domain W3C validator