Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llni Structured version   Visualization version   GIF version

Theorem llni 38367
Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
llnset.b 𝐡 = (Baseβ€˜πΎ)
llnset.c 𝐢 = ( β‹– β€˜πΎ)
llnset.a 𝐴 = (Atomsβ€˜πΎ)
llnset.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
llni (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝑁)

Proof of Theorem llni
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1192 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝐡)
2 breq1 5150 . . . 4 (𝑝 = 𝑃 β†’ (𝑝𝐢𝑋 ↔ 𝑃𝐢𝑋))
32rspcev 3612 . . 3 ((𝑃 ∈ 𝐴 ∧ 𝑃𝐢𝑋) β†’ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)
433ad2antl3 1187 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)
5 simpl1 1191 . . 3 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝐾 ∈ 𝐷)
6 llnset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
7 llnset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
8 llnset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
9 llnset.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
106, 7, 8, 9islln 38365 . . 3 (𝐾 ∈ 𝐷 β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
115, 10syl 17 . 2 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘ ∈ 𝐴 𝑝𝐢𝑋)))
121, 4, 11mpbir2and 711 1 (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐢𝑋) β†’ 𝑋 ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140   β‹– ccvr 38120  Atomscatm 38121  LLinesclln 38350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-llines 38357
This theorem is referenced by:  llnle  38377  atcvrlln  38379  lplncvrlvol  38475
  Copyright terms: Public domain W3C validator