| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > llni | Structured version Visualization version GIF version | ||
| Description: Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| llnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| llnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| llnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| llnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| Ref | Expression |
|---|---|
| llni | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝐵) | |
| 2 | breq1 5113 | . . . 4 ⊢ (𝑝 = 𝑃 → (𝑝𝐶𝑋 ↔ 𝑃𝐶𝑋)) | |
| 3 | 2 | rspcev 3591 | . . 3 ⊢ ((𝑃 ∈ 𝐴 ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
| 4 | 3 | 3ad2antl3 1188 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋) |
| 5 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝐾 ∈ 𝐷) | |
| 6 | llnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | llnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | llnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 9 | llnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 10 | 6, 7, 8, 9 | islln 39507 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
| 11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 𝑝𝐶𝑋))) |
| 12 | 1, 4, 11 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑃𝐶𝑋) → 𝑋 ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 ⋖ ccvr 39262 Atomscatm 39263 LLinesclln 39492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-llines 39499 |
| This theorem is referenced by: llnle 39519 atcvrlln 39521 lplncvrlvol 39617 |
| Copyright terms: Public domain | W3C validator |