Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnleat Structured version   Visualization version   GIF version

Theorem llnnleat 36802
Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
llnnleat.l = (le‘𝐾)
llnnleat.a 𝐴 = (Atoms‘𝐾)
llnnleat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnnleat ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)

Proof of Theorem llnnleat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → 𝑋𝑁)
2 eqid 2801 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2801 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 llnnleat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
5 llnnleat.n . . . . . 6 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln 36795 . . . . 5 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
763ad2ant1 1130 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 235 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋))
98simprd 499 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)
10 simp11 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ HL)
11 hlatl 36649 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ AtLat)
13 simp2 1134 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞𝐴)
14 simp13 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃𝐴)
15 eqid 2801 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
1615, 4atnlt 36602 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → ¬ 𝑞(lt‘𝐾)𝑃)
1712, 13, 14, 16syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑞(lt‘𝐾)𝑃)
182, 4atbase 36578 . . . . . . 7 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
19183ad2ant2 1131 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞 ∈ (Base‘𝐾))
20 simp12 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋𝑁)
212, 5llnbase 36798 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋 ∈ (Base‘𝐾))
23 simp3 1135 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞( ⋖ ‘𝐾)𝑋)
242, 15, 3cvrlt 36559 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
2510, 19, 22, 23, 24syl31anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
26 hlpos 36655 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2710, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ Poset)
282, 4atbase 36578 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2914, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃 ∈ (Base‘𝐾))
30 llnnleat.l . . . . . . 7 = (le‘𝐾)
312, 30, 15pltletr 17576 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3227, 19, 22, 29, 31syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3325, 32mpand 694 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → (𝑋 𝑃𝑞(lt‘𝐾)𝑃))
3417, 33mtod 201 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 𝑃)
3534rexlimdv3a 3248 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 𝑃))
369, 35mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wrex 3110   class class class wbr 5033  cfv 6328  Basecbs 16478  lecple 16567  Posetcpo 17545  ltcplt 17546  ccvr 36551  Atomscatm 36552  AtLatcal 36553  HLchlt 36639  LLinesclln 36780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-proset 17533  df-poset 17551  df-plt 17563  df-glb 17580  df-p0 17644  df-lat 17651  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787
This theorem is referenced by:  llnneat  36803  llnn0  36805  lplnnle2at  36830
  Copyright terms: Public domain W3C validator