Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnleat Structured version   Visualization version   GIF version

Theorem llnnleat 37976
Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
llnnleat.l = (le‘𝐾)
llnnleat.a 𝐴 = (Atoms‘𝐾)
llnnleat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnnleat ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)

Proof of Theorem llnnleat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → 𝑋𝑁)
2 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2736 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 llnnleat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
5 llnnleat.n . . . . . 6 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln 37969 . . . . 5 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
763ad2ant1 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 231 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋))
98simprd 496 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)
10 simp11 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ HL)
11 hlatl 37822 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ AtLat)
13 simp2 1137 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞𝐴)
14 simp13 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃𝐴)
15 eqid 2736 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
1615, 4atnlt 37775 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → ¬ 𝑞(lt‘𝐾)𝑃)
1712, 13, 14, 16syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑞(lt‘𝐾)𝑃)
182, 4atbase 37751 . . . . . . 7 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
19183ad2ant2 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞 ∈ (Base‘𝐾))
20 simp12 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋𝑁)
212, 5llnbase 37972 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋 ∈ (Base‘𝐾))
23 simp3 1138 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞( ⋖ ‘𝐾)𝑋)
242, 15, 3cvrlt 37732 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
2510, 19, 22, 23, 24syl31anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
26 hlpos 37828 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2710, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ Poset)
282, 4atbase 37751 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2914, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃 ∈ (Base‘𝐾))
30 llnnleat.l . . . . . . 7 = (le‘𝐾)
312, 30, 15pltletr 18232 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3227, 19, 22, 29, 31syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3325, 32mpand 693 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → (𝑋 𝑃𝑞(lt‘𝐾)𝑃))
3417, 33mtod 197 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 𝑃)
3534rexlimdv3a 3156 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 𝑃))
369, 35mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  Basecbs 17083  lecple 17140  Posetcpo 18196  ltcplt 18197  ccvr 37724  Atomscatm 37725  AtLatcal 37726  HLchlt 37812  LLinesclln 37954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-proset 18184  df-poset 18202  df-plt 18219  df-glb 18236  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961
This theorem is referenced by:  llnneat  37977  llnn0  37979  lplnnle2at  38004
  Copyright terms: Public domain W3C validator