Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnnleat Structured version   Visualization version   GIF version

Theorem llnnleat 36653
Description: An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
llnnleat.l = (le‘𝐾)
llnnleat.a 𝐴 = (Atoms‘𝐾)
llnnleat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnnleat ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)

Proof of Theorem llnnleat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 simp2 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → 𝑋𝑁)
2 eqid 2824 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2824 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 llnnleat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
5 llnnleat.n . . . . . 6 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln 36646 . . . . 5 (𝐾 ∈ HL → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
763ad2ant1 1129 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋𝑁 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 234 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋))
98simprd 498 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋)
10 simp11 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ HL)
11 hlatl 36500 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ AtLat)
13 simp2 1133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞𝐴)
14 simp13 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃𝐴)
15 eqid 2824 . . . . . 6 (lt‘𝐾) = (lt‘𝐾)
1615, 4atnlt 36453 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → ¬ 𝑞(lt‘𝐾)𝑃)
1712, 13, 14, 16syl3anc 1367 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑞(lt‘𝐾)𝑃)
182, 4atbase 36429 . . . . . . 7 (𝑞𝐴𝑞 ∈ (Base‘𝐾))
19183ad2ant2 1130 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞 ∈ (Base‘𝐾))
20 simp12 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋𝑁)
212, 5llnbase 36649 . . . . . . 7 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
2220, 21syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑋 ∈ (Base‘𝐾))
23 simp3 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞( ⋖ ‘𝐾)𝑋)
242, 15, 3cvrlt 36410 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
2510, 19, 22, 23, 24syl31anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑞(lt‘𝐾)𝑋)
26 hlpos 36506 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ Poset)
2710, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝐾 ∈ Poset)
282, 4atbase 36429 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2914, 28syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → 𝑃 ∈ (Base‘𝐾))
30 llnnleat.l . . . . . . 7 = (le‘𝐾)
312, 30, 15pltletr 17584 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑞 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾))) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3227, 19, 22, 29, 31syl13anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ((𝑞(lt‘𝐾)𝑋𝑋 𝑃) → 𝑞(lt‘𝐾)𝑃))
3325, 32mpand 693 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → (𝑋 𝑃𝑞(lt‘𝐾)𝑃))
3417, 33mtod 200 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) ∧ 𝑞𝐴𝑞( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 𝑃)
3534rexlimdv3a 3289 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → (∃𝑞𝐴 𝑞( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 𝑃))
369, 35mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑃𝐴) → ¬ 𝑋 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wrex 3142   class class class wbr 5069  cfv 6358  Basecbs 16486  lecple 16575  Posetcpo 17553  ltcplt 17554  ccvr 36402  Atomscatm 36403  AtLatcal 36404  HLchlt 36490  LLinesclln 36631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-proset 17541  df-poset 17559  df-plt 17571  df-glb 17588  df-p0 17652  df-lat 17659  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638
This theorem is referenced by:  llnneat  36654  llnn0  36656  lplnnle2at  36681
  Copyright terms: Public domain W3C validator