Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln3 Structured version   Visualization version   GIF version

Theorem islln3 38892
Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐡 = (Baseβ€˜πΎ)
islln3.j ∨ = (joinβ€˜πΎ)
islln3.a 𝐴 = (Atomsβ€˜πΎ)
islln3.n 𝑁 = (LLinesβ€˜πΎ)
Assertion
Ref Expression
islln3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
Distinct variable groups:   π‘ž,𝑝,𝐴   𝐡,𝑝,π‘ž   𝐾,𝑝,π‘ž   𝑋,𝑝,π‘ž
Allowed substitution hints:   ∨ (π‘ž,𝑝)   𝑁(π‘ž,𝑝)

Proof of Theorem islln3
StepHypRef Expression
1 islln3.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2726 . . 3 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
3 islln3.a . . 3 𝐴 = (Atomsβ€˜πΎ)
4 islln3.n . . 3 𝑁 = (LLinesβ€˜πΎ)
51, 2, 3, 4islln4 38889 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 𝑝( β‹– β€˜πΎ)𝑋))
6 simpll 764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝐾 ∈ HL)
71, 3atbase 38670 . . . . . 6 (𝑝 ∈ 𝐴 β†’ 𝑝 ∈ 𝐡)
87adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝑝 ∈ 𝐡)
9 simplr 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ 𝑋 ∈ 𝐡)
10 eqid 2726 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
11 islln3.j . . . . . 6 ∨ = (joinβ€˜πΎ)
121, 10, 11, 2, 3cvrval3 38795 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑝( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝 ∨ π‘ž) = 𝑋)))
136, 8, 9, 12syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝 ∨ π‘ž) = 𝑋)))
14 hlatl 38741 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
1514ad3antrrr 727 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ 𝐾 ∈ AtLat)
16 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ π‘ž ∈ 𝐴)
17 simplr 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ 𝑝 ∈ 𝐴)
1810, 3atncmp 38693 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ π‘ž ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ π‘ž β‰  𝑝))
1915, 16, 17, 18syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ π‘ž β‰  𝑝))
20 necom 2988 . . . . . . 7 (π‘ž β‰  𝑝 ↔ 𝑝 β‰  π‘ž)
2119, 20bitrdi 287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ (Β¬ π‘ž(leβ€˜πΎ)𝑝 ↔ 𝑝 β‰  π‘ž))
22 eqcom 2733 . . . . . . 7 ((𝑝 ∨ π‘ž) = 𝑋 ↔ 𝑋 = (𝑝 ∨ π‘ž))
2322a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ ((𝑝 ∨ π‘ž) = 𝑋 ↔ 𝑋 = (𝑝 ∨ π‘ž)))
2421, 23anbi12d 630 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) ∧ π‘ž ∈ 𝐴) β†’ ((Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝 ∨ π‘ž) = 𝑋) ↔ (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
2524rexbidva 3170 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)𝑝 ∧ (𝑝 ∨ π‘ž) = 𝑋) ↔ βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
2613, 25bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑝 ∈ 𝐴) β†’ (𝑝( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
2726rexbidva 3170 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (βˆƒπ‘ ∈ 𝐴 𝑝( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
285, 27bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑁 ↔ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 (𝑝 β‰  π‘ž ∧ 𝑋 = (𝑝 ∨ π‘ž))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  lecple 17211  joincjn 18274   β‹– ccvr 38643  Atomscatm 38644  AtLatcal 38645  HLchlt 38731  LLinesclln 38873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732  df-llines 38880
This theorem is referenced by:  islln2  38893  llni2  38894  atcvrlln2  38901  atcvrlln  38902  llnexchb2  39251
  Copyright terms: Public domain W3C validator