![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln3 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
islln3.b | ⊢ 𝐵 = (Base‘𝐾) |
islln3.j | ⊢ ∨ = (join‘𝐾) |
islln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islln3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2726 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | islln3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | islln3.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
5 | 1, 2, 3, 4 | islln4 39206 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝( ⋖ ‘𝐾)𝑋)) |
6 | simpll 765 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) | |
7 | 1, 3 | atbase 38987 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
8 | 7 | adantl 480 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
9 | simplr 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
10 | eqid 2726 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | islln3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
12 | 1, 10, 11, 2, 3 | cvrval3 39112 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋))) |
13 | 6, 8, 9, 12 | syl3anc 1368 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋))) |
14 | hlatl 39058 | . . . . . . . . 9 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
15 | 14 | ad3antrrr 728 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
16 | simpr 483 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
17 | simplr 767 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑝 ∈ 𝐴) | |
18 | 10, 3 | atncmp 39010 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
19 | 15, 16, 17, 18 | syl3anc 1368 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
20 | necom 2984 | . . . . . . 7 ⊢ (𝑞 ≠ 𝑝 ↔ 𝑝 ≠ 𝑞) | |
21 | 19, 20 | bitrdi 286 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑝 ≠ 𝑞)) |
22 | eqcom 2733 | . . . . . . 7 ⊢ ((𝑝 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑝 ∨ 𝑞)) | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((𝑝 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
24 | 21, 23 | anbi12d 630 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
25 | 24 | rexbidva 3167 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
26 | 13, 25 | bitrd 278 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
27 | 26 | rexbidva 3167 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
28 | 5, 27 | bitrd 278 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 lecple 17273 joincjn 18336 ⋖ ccvr 38960 Atomscatm 38961 AtLatcal 38962 HLchlt 39048 LLinesclln 39190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-proset 18320 df-poset 18338 df-plt 18355 df-lub 18371 df-glb 18372 df-join 18373 df-meet 18374 df-p0 18450 df-lat 18457 df-clat 18524 df-oposet 38874 df-ol 38876 df-oml 38877 df-covers 38964 df-ats 38965 df-atl 38996 df-cvlat 39020 df-hlat 39049 df-llines 39197 |
This theorem is referenced by: islln2 39210 llni2 39211 atcvrlln2 39218 atcvrlln 39219 llnexchb2 39568 |
Copyright terms: Public domain | W3C validator |