Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln3 Structured version   Visualization version   GIF version

Theorem islln3 39512
Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐵 = (Base‘𝐾)
islln3.j = (join‘𝐾)
islln3.a 𝐴 = (Atoms‘𝐾)
islln3.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐵,𝑝,𝑞   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem islln3
StepHypRef Expression
1 islln3.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2737 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 islln3.a . . 3 𝐴 = (Atoms‘𝐾)
4 islln3.n . . 3 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln4 39509 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴 𝑝( ⋖ ‘𝐾)𝑋))
6 simpll 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
71, 3atbase 39290 . . . . . 6 (𝑝𝐴𝑝𝐵)
87adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
9 simplr 769 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
10 eqid 2737 . . . . . 6 (le‘𝐾) = (le‘𝐾)
11 islln3.j . . . . . 6 = (join‘𝐾)
121, 10, 11, 2, 3cvrval3 39415 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋)))
136, 8, 9, 12syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋)))
14 hlatl 39361 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1514ad3antrrr 730 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
16 simpr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
17 simplr 769 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑝𝐴)
1810, 3atncmp 39313 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑝𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
1915, 16, 17, 18syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
20 necom 2994 . . . . . . 7 (𝑞𝑝𝑝𝑞)
2119, 20bitrdi 287 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑝𝑞))
22 eqcom 2744 . . . . . . 7 ((𝑝 𝑞) = 𝑋𝑋 = (𝑝 𝑞))
2322a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞) = 𝑋𝑋 = (𝑝 𝑞)))
2421, 23anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋) ↔ (𝑝𝑞𝑋 = (𝑝 𝑞))))
2524rexbidva 3177 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋) ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
2613, 25bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
2726rexbidva 3177 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
285, 27bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  ccvr 39263  Atomscatm 39264  AtLatcal 39265  HLchlt 39351  LLinesclln 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500
This theorem is referenced by:  islln2  39513  llni2  39514  atcvrlln2  39521  atcvrlln  39522  llnexchb2  39871
  Copyright terms: Public domain W3C validator