Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islln3 Structured version   Visualization version   GIF version

Theorem islln3 39209
Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islln3.b 𝐵 = (Base‘𝐾)
islln3.j = (join‘𝐾)
islln3.a 𝐴 = (Atoms‘𝐾)
islln3.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
islln3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐵,𝑝,𝑞   𝐾,𝑝,𝑞   𝑋,𝑝,𝑞
Allowed substitution hints:   (𝑞,𝑝)   𝑁(𝑞,𝑝)

Proof of Theorem islln3
StepHypRef Expression
1 islln3.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2726 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 islln3.a . . 3 𝐴 = (Atoms‘𝐾)
4 islln3.n . . 3 𝑁 = (LLines‘𝐾)
51, 2, 3, 4islln4 39206 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴 𝑝( ⋖ ‘𝐾)𝑋))
6 simpll 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
71, 3atbase 38987 . . . . . 6 (𝑝𝐴𝑝𝐵)
87adantl 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
9 simplr 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
10 eqid 2726 . . . . . 6 (le‘𝐾) = (le‘𝐾)
11 islln3.j . . . . . 6 = (join‘𝐾)
121, 10, 11, 2, 3cvrval3 39112 . . . . 5 ((𝐾 ∈ HL ∧ 𝑝𝐵𝑋𝐵) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋)))
136, 8, 9, 12syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋)))
14 hlatl 39058 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1514ad3antrrr 728 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
16 simpr 483 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
17 simplr 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → 𝑝𝐴)
1810, 3atncmp 39010 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑝𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
1915, 16, 17, 18syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑞𝑝))
20 necom 2984 . . . . . . 7 (𝑞𝑝𝑝𝑞)
2119, 20bitrdi 286 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑝𝑝𝑞))
22 eqcom 2733 . . . . . . 7 ((𝑝 𝑞) = 𝑋𝑋 = (𝑝 𝑞))
2322a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((𝑝 𝑞) = 𝑋𝑋 = (𝑝 𝑞)))
2421, 23anbi12d 630 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) ∧ 𝑞𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋) ↔ (𝑝𝑞𝑋 = (𝑝 𝑞))))
2524rexbidva 3167 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (∃𝑞𝐴𝑞(le‘𝐾)𝑝 ∧ (𝑝 𝑞) = 𝑋) ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
2613, 25bitrd 278 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑝𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
2726rexbidva 3167 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑝𝐴 𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
285, 27bitrd 278 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑁 ↔ ∃𝑝𝐴𝑞𝐴 (𝑝𝑞𝑋 = (𝑝 𝑞))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060   class class class wbr 5153  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  joincjn 18336  ccvr 38960  Atomscatm 38961  AtLatcal 38962  HLchlt 39048  LLinesclln 39190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-llines 39197
This theorem is referenced by:  islln2  39210  llni2  39211  atcvrlln2  39218  atcvrlln  39219  llnexchb2  39568
  Copyright terms: Public domain W3C validator