Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islln3 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
islln3.b | ⊢ 𝐵 = (Base‘𝐾) |
islln3.j | ⊢ ∨ = (join‘𝐾) |
islln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
islln3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islln3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2759 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | islln3.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | islln3.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
5 | 1, 2, 3, 4 | islln4 37076 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 𝑝( ⋖ ‘𝐾)𝑋)) |
6 | simpll 767 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) | |
7 | 1, 3 | atbase 36858 | . . . . . 6 ⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
8 | 7 | adantl 486 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
9 | simplr 769 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
10 | eqid 2759 | . . . . . 6 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | islln3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
12 | 1, 10, 11, 2, 3 | cvrval3 36982 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋))) |
13 | 6, 8, 9, 12 | syl3anc 1369 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋))) |
14 | hlatl 36929 | . . . . . . . . 9 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
15 | 14 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
16 | simpr 489 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
17 | simplr 769 | . . . . . . . 8 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑝 ∈ 𝐴) | |
18 | 10, 3 | atncmp 36881 | . . . . . . . 8 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
19 | 15, 16, 17, 18 | syl3anc 1369 | . . . . . . 7 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑞 ≠ 𝑝)) |
20 | necom 3005 | . . . . . . 7 ⊢ (𝑞 ≠ 𝑝 ↔ 𝑝 ≠ 𝑞) | |
21 | 19, 20 | syl6bb 291 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (¬ 𝑞(le‘𝐾)𝑝 ↔ 𝑝 ≠ 𝑞)) |
22 | eqcom 2766 | . . . . . . 7 ⊢ ((𝑝 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑝 ∨ 𝑞)) | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((𝑝 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑝 ∨ 𝑞))) |
24 | 21, 23 | anbi12d 634 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → ((¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋) ↔ (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
25 | 24 | rexbidva 3221 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (∃𝑞 ∈ 𝐴 (¬ 𝑞(le‘𝐾)𝑝 ∧ (𝑝 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
26 | 13, 25 | bitrd 282 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
27 | 26 | rexbidva 3221 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 𝑝( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
28 | 5, 27 | bitrd 282 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ 𝑋 = (𝑝 ∨ 𝑞)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 lecple 16623 joincjn 17613 ⋖ ccvr 36831 Atomscatm 36832 AtLatcal 36833 HLchlt 36919 LLinesclln 37060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-lat 17715 df-clat 17777 df-oposet 36745 df-ol 36747 df-oml 36748 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 df-llines 37067 |
This theorem is referenced by: islln2 37080 llni2 37081 atcvrlln2 37088 atcvrlln 37089 llnexchb2 37438 |
Copyright terms: Public domain | W3C validator |