Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln | ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lplnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | lplnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | lplnset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | 1, 2, 3, 4 | lplnset 37543 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
6 | 5 | eleq2d 2824 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥})) |
7 | breq2 5078 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝐶𝑥 ↔ 𝑦𝐶𝑋)) | |
8 | 7 | rexbidv 3226 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑁 𝑦𝐶𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
9 | 8 | elrab 3624 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 ⋖ ccvr 37276 LLinesclln 37505 LPlanesclpl 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-lplanes 37513 |
This theorem is referenced by: islpln4 37545 lplni 37546 lplnbase 37548 lplnnle2at 37555 |
Copyright terms: Public domain | W3C validator |