Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln Structured version   Visualization version   GIF version

Theorem islpln 36658
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lplnset.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . . 4 𝑁 = (LLines‘𝐾)
4 lplnset.p . . . 4 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4lplnset 36657 . . 3 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
65eleq2d 2896 . 2 (𝐾𝐴 → (𝑋𝑃𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥}))
7 breq2 5061 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3295 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑁 𝑦𝐶𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
98elrab 3678 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋))
106, 9syl6bb 289 1 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wrex 3137  {crab 3140   class class class wbr 5057  cfv 6348  Basecbs 16475  ccvr 36390  LLinesclln 36619  LPlanesclpl 36620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-lplanes 36627
This theorem is referenced by:  islpln4  36659  lplni  36660  lplnbase  36662  lplnnle2at  36669
  Copyright terms: Public domain W3C validator