![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | β’ π΅ = (BaseβπΎ) |
lplnset.c | β’ πΆ = ( β βπΎ) |
lplnset.n | β’ π = (LLinesβπΎ) |
lplnset.p | β’ π = (LPlanesβπΎ) |
Ref | Expression |
---|---|
islpln | β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | lplnset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
3 | lplnset.n | . . . 4 β’ π = (LLinesβπΎ) | |
4 | lplnset.p | . . . 4 β’ π = (LPlanesβπΎ) | |
5 | 1, 2, 3, 4 | lplnset 38400 | . . 3 β’ (πΎ β π΄ β π = {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯}) |
6 | 5 | eleq2d 2820 | . 2 β’ (πΎ β π΄ β (π β π β π β {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯})) |
7 | breq2 5153 | . . . 4 β’ (π₯ = π β (π¦πΆπ₯ β π¦πΆπ)) | |
8 | 7 | rexbidv 3179 | . . 3 β’ (π₯ = π β (βπ¦ β π π¦πΆπ₯ β βπ¦ β π π¦πΆπ)) |
9 | 8 | elrab 3684 | . 2 β’ (π β {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯} β (π β π΅ β§ βπ¦ β π π¦πΆπ)) |
10 | 6, 9 | bitrdi 287 | 1 β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwrex 3071 {crab 3433 class class class wbr 5149 βcfv 6544 Basecbs 17144 β ccvr 38132 LLinesclln 38362 LPlanesclpl 38363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-lplanes 38370 |
This theorem is referenced by: islpln4 38402 lplni 38403 lplnbase 38405 lplnnle2at 38412 |
Copyright terms: Public domain | W3C validator |