Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln Structured version   Visualization version   GIF version

Theorem islpln 39509
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lplnset.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . . 4 𝑁 = (LLines‘𝐾)
4 lplnset.p . . . 4 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4lplnset 39508 . . 3 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
65eleq2d 2814 . 2 (𝐾𝐴 → (𝑋𝑃𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥}))
7 breq2 5099 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3153 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑁 𝑦𝐶𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
98elrab 3650 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋))
106, 9bitrdi 287 1 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3396   class class class wbr 5095  cfv 6486  Basecbs 17138  ccvr 39240  LLinesclln 39470  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-lplanes 39478
This theorem is referenced by:  islpln4  39510  lplni  39511  lplnbase  39513  lplnnle2at  39520
  Copyright terms: Public domain W3C validator