Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln Structured version   Visualization version   GIF version

Theorem islpln 38905
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐡 = (Baseβ€˜πΎ)
lplnset.c 𝐢 = ( β‹– β€˜πΎ)
lplnset.n 𝑁 = (LLinesβ€˜πΎ)
lplnset.p 𝑃 = (LPlanesβ€˜πΎ)
Assertion
Ref Expression
islpln (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋)))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐡(𝑦)   𝐢(𝑦)   𝑃(𝑦)

Proof of Theorem islpln
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 lplnset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 lplnset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
3 lplnset.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
4 lplnset.p . . . 4 𝑃 = (LPlanesβ€˜πΎ)
51, 2, 3, 4lplnset 38904 . . 3 (𝐾 ∈ 𝐴 β†’ 𝑃 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯})
65eleq2d 2811 . 2 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯}))
7 breq2 5143 . . . 4 (π‘₯ = 𝑋 β†’ (𝑦𝐢π‘₯ ↔ 𝑦𝐢𝑋))
87rexbidv 3170 . . 3 (π‘₯ = 𝑋 β†’ (βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯ ↔ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋))
98elrab 3676 . 2 (𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯} ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋))
106, 9bitrdi 287 1 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3062  {crab 3424   class class class wbr 5139  β€˜cfv 6534  Basecbs 17149   β‹– ccvr 38636  LLinesclln 38866  LPlanesclpl 38867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fv 6542  df-lplanes 38874
This theorem is referenced by:  islpln4  38906  lplni  38907  lplnbase  38909  lplnnle2at  38916
  Copyright terms: Public domain W3C validator