| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| islpln | ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lplnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lplnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | lplnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 4 | lplnset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 5 | 1, 2, 3, 4 | lplnset 39490 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 6 | 5 | eleq2d 2819 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥})) |
| 7 | breq2 5127 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝐶𝑥 ↔ 𝑦𝐶𝑋)) | |
| 8 | 7 | rexbidv 3166 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑁 𝑦𝐶𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
| 9 | 8 | elrab 3675 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 class class class wbr 5123 ‘cfv 6541 Basecbs 17229 ⋖ ccvr 39222 LLinesclln 39452 LPlanesclpl 39453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-lplanes 39460 |
| This theorem is referenced by: islpln4 39492 lplni 39493 lplnbase 39495 lplnnle2at 39502 |
| Copyright terms: Public domain | W3C validator |