Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln Structured version   Visualization version   GIF version

Theorem islpln 36826
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lplnset.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . . 4 𝑁 = (LLines‘𝐾)
4 lplnset.p . . . 4 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4lplnset 36825 . . 3 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
65eleq2d 2875 . 2 (𝐾𝐴 → (𝑋𝑃𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥}))
7 breq2 5034 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3256 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑁 𝑦𝐶𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
98elrab 3628 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋))
106, 9syl6bb 290 1 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110   class class class wbr 5030  cfv 6324  Basecbs 16475  ccvr 36558  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-lplanes 36795
This theorem is referenced by:  islpln4  36827  lplni  36828  lplnbase  36830  lplnnle2at  36837
  Copyright terms: Public domain W3C validator