![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | β’ π΅ = (BaseβπΎ) |
lplnset.c | β’ πΆ = ( β βπΎ) |
lplnset.n | β’ π = (LLinesβπΎ) |
lplnset.p | β’ π = (LPlanesβπΎ) |
Ref | Expression |
---|---|
islpln | β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | lplnset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
3 | lplnset.n | . . . 4 β’ π = (LLinesβπΎ) | |
4 | lplnset.p | . . . 4 β’ π = (LPlanesβπΎ) | |
5 | 1, 2, 3, 4 | lplnset 38904 | . . 3 β’ (πΎ β π΄ β π = {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯}) |
6 | 5 | eleq2d 2811 | . 2 β’ (πΎ β π΄ β (π β π β π β {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯})) |
7 | breq2 5143 | . . . 4 β’ (π₯ = π β (π¦πΆπ₯ β π¦πΆπ)) | |
8 | 7 | rexbidv 3170 | . . 3 β’ (π₯ = π β (βπ¦ β π π¦πΆπ₯ β βπ¦ β π π¦πΆπ)) |
9 | 8 | elrab 3676 | . 2 β’ (π β {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯} β (π β π΅ β§ βπ¦ β π π¦πΆπ)) |
10 | 6, 9 | bitrdi 287 | 1 β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3062 {crab 3424 class class class wbr 5139 βcfv 6534 Basecbs 17149 β ccvr 38636 LLinesclln 38866 LPlanesclpl 38867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-lplanes 38874 |
This theorem is referenced by: islpln4 38906 lplni 38907 lplnbase 38909 lplnnle2at 38916 |
Copyright terms: Public domain | W3C validator |