Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln Structured version   Visualization version   GIF version

Theorem islpln 38401
Description: The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐡 = (Baseβ€˜πΎ)
lplnset.c 𝐢 = ( β‹– β€˜πΎ)
lplnset.n 𝑁 = (LLinesβ€˜πΎ)
lplnset.p 𝑃 = (LPlanesβ€˜πΎ)
Assertion
Ref Expression
islpln (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋)))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐡(𝑦)   𝐢(𝑦)   𝑃(𝑦)

Proof of Theorem islpln
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 lplnset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 lplnset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
3 lplnset.n . . . 4 𝑁 = (LLinesβ€˜πΎ)
4 lplnset.p . . . 4 𝑃 = (LPlanesβ€˜πΎ)
51, 2, 3, 4lplnset 38400 . . 3 (𝐾 ∈ 𝐴 β†’ 𝑃 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯})
65eleq2d 2820 . 2 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ 𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯}))
7 breq2 5153 . . . 4 (π‘₯ = 𝑋 β†’ (𝑦𝐢π‘₯ ↔ 𝑦𝐢𝑋))
87rexbidv 3179 . . 3 (π‘₯ = 𝑋 β†’ (βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯ ↔ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋))
98elrab 3684 . 2 (𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢π‘₯} ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋))
106, 9bitrdi 287 1 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑁 𝑦𝐢𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433   class class class wbr 5149  β€˜cfv 6544  Basecbs 17144   β‹– ccvr 38132  LLinesclln 38362  LPlanesclpl 38363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-lplanes 38370
This theorem is referenced by:  islpln4  38402  lplni  38403  lplnbase  38405  lplnnle2at  38412
  Copyright terms: Public domain W3C validator