Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni Structured version   Visualization version   GIF version

Theorem lplni 39533
Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplni (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)

Proof of Theorem lplni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
2 breq1 5113 . . . 4 (𝑥 = 𝑋 → (𝑥𝐶𝑌𝑋𝐶𝑌))
32rspcev 3591 . . 3 ((𝑋𝑁𝑋𝐶𝑌) → ∃𝑥𝑁 𝑥𝐶𝑌)
433ad2antl3 1188 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → ∃𝑥𝑁 𝑥𝐶𝑌)
5 simpl1 1192 . . 3 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝐾𝐷)
6 lplnset.b . . . 4 𝐵 = (Base‘𝐾)
7 lplnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 lplnset.n . . . 4 𝑁 = (LLines‘𝐾)
9 lplnset.p . . . 4 𝑃 = (LPlanes‘𝐾)
106, 7, 8, 9islpln 39531 . . 3 (𝐾𝐷 → (𝑌𝑃 ↔ (𝑌𝐵 ∧ ∃𝑥𝑁 𝑥𝐶𝑌)))
115, 10syl 17 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 ↔ (𝑌𝐵 ∧ ∃𝑥𝑁 𝑥𝐶𝑌)))
121, 4, 11mpbir2and 713 1 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  Basecbs 17186  ccvr 39262  LLinesclln 39492  LPlanesclpl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-lplanes 39500
This theorem is referenced by:  lplnle  39541  llncvrlpln  39559  lplnexllnN  39565
  Copyright terms: Public domain W3C validator