| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplni | Structured version Visualization version GIF version | ||
| Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplni | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
| 2 | breq1 5122 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝑌 ↔ 𝑋𝐶𝑌)) | |
| 3 | 2 | rspcev 3601 | . . 3 ⊢ ((𝑋 ∈ 𝑁 ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑁 𝑥𝐶𝑌) |
| 4 | 3 | 3ad2antl3 1188 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑁 𝑥𝐶𝑌) |
| 5 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ 𝐷) | |
| 6 | lplnset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | lplnset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | lplnset.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 9 | lplnset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 10 | 6, 7, 8, 9 | islpln 39549 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑁 𝑥𝐶𝑌))) |
| 11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → (𝑌 ∈ 𝑃 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑁 𝑥𝐶𝑌))) |
| 12 | 1, 4, 11 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑁) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 ⋖ ccvr 39280 LLinesclln 39510 LPlanesclpl 39511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-lplanes 39518 |
| This theorem is referenced by: lplnle 39559 llncvrlpln 39577 lplnexllnN 39583 |
| Copyright terms: Public domain | W3C validator |