![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplni | Structured version Visualization version GIF version |
Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | β’ π΅ = (BaseβπΎ) |
lplnset.c | β’ πΆ = ( β βπΎ) |
lplnset.n | β’ π = (LLinesβπΎ) |
lplnset.p | β’ π = (LPlanesβπΎ) |
Ref | Expression |
---|---|
lplni | β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π΅) | |
2 | breq1 5151 | . . . 4 β’ (π₯ = π β (π₯πΆπ β ππΆπ)) | |
3 | 2 | rspcev 3609 | . . 3 β’ ((π β π β§ ππΆπ) β βπ₯ β π π₯πΆπ) |
4 | 3 | 3ad2antl3 1185 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β βπ₯ β π π₯πΆπ) |
5 | simpl1 1189 | . . 3 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β πΎ β π·) | |
6 | lplnset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
7 | lplnset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
8 | lplnset.n | . . . 4 β’ π = (LLinesβπΎ) | |
9 | lplnset.p | . . . 4 β’ π = (LPlanesβπΎ) | |
10 | 6, 7, 8, 9 | islpln 39003 | . . 3 β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ₯ β π π₯πΆπ))) |
11 | 5, 10 | syl 17 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β (π β π β (π β π΅ β§ βπ₯ β π π₯πΆπ))) |
12 | 1, 4, 11 | mpbir2and 712 | 1 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βwrex 3067 class class class wbr 5148 βcfv 6548 Basecbs 17180 β ccvr 38734 LLinesclln 38964 LPlanesclpl 38965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-lplanes 38972 |
This theorem is referenced by: lplnle 39013 llncvrlpln 39031 lplnexllnN 39037 |
Copyright terms: Public domain | W3C validator |