Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplni Structured version   Visualization version   GIF version

Theorem lplni 37142
Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplni (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)

Proof of Theorem lplni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1189 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
2 breq1 5039 . . . 4 (𝑥 = 𝑋 → (𝑥𝐶𝑌𝑋𝐶𝑌))
32rspcev 3543 . . 3 ((𝑋𝑁𝑋𝐶𝑌) → ∃𝑥𝑁 𝑥𝐶𝑌)
433ad2antl3 1184 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → ∃𝑥𝑁 𝑥𝐶𝑌)
5 simpl1 1188 . . 3 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝐾𝐷)
6 lplnset.b . . . 4 𝐵 = (Base‘𝐾)
7 lplnset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 lplnset.n . . . 4 𝑁 = (LLines‘𝐾)
9 lplnset.p . . . 4 𝑃 = (LPlanes‘𝐾)
106, 7, 8, 9islpln 37140 . . 3 (𝐾𝐷 → (𝑌𝑃 ↔ (𝑌𝐵 ∧ ∃𝑥𝑁 𝑥𝐶𝑌)))
115, 10syl 17 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → (𝑌𝑃 ↔ (𝑌𝐵 ∧ ∃𝑥𝑁 𝑥𝐶𝑌)))
121, 4, 11mpbir2and 712 1 (((𝐾𝐷𝑌𝐵𝑋𝑁) ∧ 𝑋𝐶𝑌) → 𝑌𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071   class class class wbr 5036  cfv 6340  Basecbs 16554  ccvr 36872  LLinesclln 37101  LPlanesclpl 37102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6299  df-fun 6342  df-fv 6348  df-lplanes 37109
This theorem is referenced by:  lplnle  37150  llncvrlpln  37168  lplnexllnN  37174
  Copyright terms: Public domain W3C validator