Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln4 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln4 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lplnset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | lplnset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | lplnset.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | lplnset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | 1, 2, 3, 4 | islpln 37806 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋))) |
6 | 5 | baibd 540 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 class class class wbr 5092 ‘cfv 6479 Basecbs 17009 ⋖ ccvr 37537 LLinesclln 37767 LPlanesclpl 37768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-lplanes 37775 |
This theorem is referenced by: islpln3 37809 lplncmp 37838 |
Copyright terms: Public domain | W3C validator |