Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln4 Structured version   Visualization version   GIF version

Theorem islpln4 37472
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln4 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln4
StepHypRef Expression
1 lplnset.b . . 3 𝐵 = (Base‘𝐾)
2 lplnset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . 3 𝑁 = (LLines‘𝐾)
4 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4islpln 37471 . 2 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
65baibd 539 1 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  Basecbs 16840  ccvr 37203  LLinesclln 37432  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-lplanes 37440
This theorem is referenced by:  islpln3  37474  lplncmp  37503
  Copyright terms: Public domain W3C validator