Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln4 Structured version   Visualization version   GIF version

Theorem islpln4 37807
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln4 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln4
StepHypRef Expression
1 lplnset.b . . 3 𝐵 = (Base‘𝐾)
2 lplnset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . 3 𝑁 = (LLines‘𝐾)
4 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4islpln 37806 . 2 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
65baibd 540 1 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wrex 3070   class class class wbr 5092  cfv 6479  Basecbs 17009  ccvr 37537  LLinesclln 37767  LPlanesclpl 37768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-lplanes 37775
This theorem is referenced by:  islpln3  37809  lplncmp  37838
  Copyright terms: Public domain W3C validator