Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln4 Structured version   Visualization version   GIF version

Theorem islpln4 39525
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
islpln4 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Distinct variable groups:   𝑦,𝑁   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)

Proof of Theorem islpln4
StepHypRef Expression
1 lplnset.b . . 3 𝐵 = (Base‘𝐾)
2 lplnset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 lplnset.n . . 3 𝑁 = (LLines‘𝐾)
4 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
51, 2, 3, 4islpln 39524 . 2 (𝐾𝐴 → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑦𝑁 𝑦𝐶𝑋)))
65baibd 539 1 ((𝐾𝐴𝑋𝐵) → (𝑋𝑃 ↔ ∃𝑦𝑁 𝑦𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  Basecbs 17179  ccvr 39255  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-lplanes 39493
This theorem is referenced by:  islpln3  39527  lplncmp  39556
  Copyright terms: Public domain W3C validator