Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnbase Structured version   Visualization version   GIF version

Theorem lplnbase 39517
Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
lplnbase.b 𝐵 = (Base‘𝐾)
lplnbase.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnbase (𝑋𝑃𝑋𝐵)

Proof of Theorem lplnbase
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0i 4346 . . . 4 (𝑋𝑃 → ¬ 𝑃 = ∅)
2 lplnbase.p . . . . 5 𝑃 = (LPlanes‘𝐾)
32eqeq1i 2740 . . . 4 (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅)
41, 3sylnib 328 . . 3 (𝑋𝑃 → ¬ (LPlanes‘𝐾) = ∅)
5 fvprc 6899 . . 3 𝐾 ∈ V → (LPlanes‘𝐾) = ∅)
64, 5nsyl2 141 . 2 (𝑋𝑃𝐾 ∈ V)
7 lplnbase.b . . . 4 𝐵 = (Base‘𝐾)
8 eqid 2735 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
9 eqid 2735 . . . 4 (LLines‘𝐾) = (LLines‘𝐾)
107, 8, 9, 2islpln 39513 . . 3 (𝐾 ∈ V → (𝑋𝑃 ↔ (𝑋𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋)))
1110simprbda 498 . 2 ((𝐾 ∈ V ∧ 𝑋𝑃) → 𝑋𝐵)
126, 11mpancom 688 1 (𝑋𝑃𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wrex 3068  Vcvv 3478  c0 4339   class class class wbr 5148  cfv 6563  Basecbs 17245  ccvr 39244  LLinesclln 39474  LPlanesclpl 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-lplanes 39482
This theorem is referenced by:  islpln2  39519  llnmlplnN  39522  lplnnle2at  39524  lplnneat  39528  lplnnelln  39529  llncvrlpln2  39540  2lplnmN  39542  lplncmp  39545  lplnexatN  39546  lplnexllnN  39547  2llnjaN  39549  islvol3  39559  lvoli3  39560  lvolnle3at  39565  lplncvrlvol2  39598  lplncvrlvol  39599  lvolcmp  39600  2lplnm2N  39604  2lplnmj  39605  dalemyeb  39632  dalem10  39656  dalem16  39662  dalem44  39699  dalem55  39710
  Copyright terms: Public domain W3C validator