Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnbase | Structured version Visualization version GIF version |
Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
lplnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnbase.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnbase | ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4269 | . . . 4 ⊢ (𝑋 ∈ 𝑃 → ¬ 𝑃 = ∅) | |
2 | lplnbase.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 2 | eqeq1i 2743 | . . . 4 ⊢ (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅) |
4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ¬ (LPlanes‘𝐾) = ∅) |
5 | fvprc 6768 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LPlanes‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝐾 ∈ V) |
7 | lplnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2738 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
10 | 7, 8, 9, 2 | islpln 37541 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 499 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 685 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3431 ∅c0 4258 class class class wbr 5076 ‘cfv 6435 Basecbs 16910 ⋖ ccvr 37273 LLinesclln 37502 LPlanesclpl 37503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pr 5354 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3433 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-br 5077 df-opab 5139 df-mpt 5160 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6393 df-fun 6437 df-fv 6443 df-lplanes 37510 |
This theorem is referenced by: islpln2 37547 llnmlplnN 37550 lplnnle2at 37552 lplnneat 37556 lplnnelln 37557 llncvrlpln2 37568 2lplnmN 37570 lplncmp 37573 lplnexatN 37574 lplnexllnN 37575 2llnjaN 37577 islvol3 37587 lvoli3 37588 lvolnle3at 37593 lplncvrlvol2 37626 lplncvrlvol 37627 lvolcmp 37628 2lplnm2N 37632 2lplnmj 37633 dalemyeb 37660 dalem10 37684 dalem16 37690 dalem44 37727 dalem55 37738 |
Copyright terms: Public domain | W3C validator |