Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnbase | Structured version Visualization version GIF version |
Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
lplnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnbase.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnbase | ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . . 4 ⊢ (𝑋 ∈ 𝑃 → ¬ 𝑃 = ∅) | |
2 | lplnbase.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 2 | eqeq1i 2743 | . . . 4 ⊢ (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅) |
4 | 1, 3 | sylnib 327 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ¬ (LPlanes‘𝐾) = ∅) |
5 | fvprc 6748 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LPlanes‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝐾 ∈ V) |
7 | lplnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2738 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
10 | 7, 8, 9, 2 | islpln 37471 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 684 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 ⋖ ccvr 37203 LLinesclln 37432 LPlanesclpl 37433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lplanes 37440 |
This theorem is referenced by: islpln2 37477 llnmlplnN 37480 lplnnle2at 37482 lplnneat 37486 lplnnelln 37487 llncvrlpln2 37498 2lplnmN 37500 lplncmp 37503 lplnexatN 37504 lplnexllnN 37505 2llnjaN 37507 islvol3 37517 lvoli3 37518 lvolnle3at 37523 lplncvrlvol2 37556 lplncvrlvol 37557 lvolcmp 37558 2lplnm2N 37562 2lplnmj 37563 dalemyeb 37590 dalem10 37614 dalem16 37620 dalem44 37657 dalem55 37668 |
Copyright terms: Public domain | W3C validator |