| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnbase | Structured version Visualization version GIF version | ||
| Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnbase.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnbase | ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . 4 ⊢ (𝑋 ∈ 𝑃 → ¬ 𝑃 = ∅) | |
| 2 | lplnbase.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 3 | 2 | eqeq1i 2738 | . . . 4 ⊢ (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ¬ (LPlanes‘𝐾) = ∅) |
| 5 | fvprc 6820 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LPlanes‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝐾 ∈ V) |
| 7 | lplnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2733 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2733 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
| 10 | 7, 8, 9, 2 | islpln 39649 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∅c0 4282 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 ⋖ ccvr 39381 LLinesclln 39610 LPlanesclpl 39611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-lplanes 39618 |
| This theorem is referenced by: islpln2 39655 llnmlplnN 39658 lplnnle2at 39660 lplnneat 39664 lplnnelln 39665 llncvrlpln2 39676 2lplnmN 39678 lplncmp 39681 lplnexatN 39682 lplnexllnN 39683 2llnjaN 39685 islvol3 39695 lvoli3 39696 lvolnle3at 39701 lplncvrlvol2 39734 lplncvrlvol 39735 lvolcmp 39736 2lplnm2N 39740 2lplnmj 39741 dalemyeb 39768 dalem10 39792 dalem16 39798 dalem44 39835 dalem55 39846 |
| Copyright terms: Public domain | W3C validator |