Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnbase | Structured version Visualization version GIF version |
Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
lplnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnbase.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnbase | ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4267 | . . . 4 ⊢ (𝑋 ∈ 𝑃 → ¬ 𝑃 = ∅) | |
2 | lplnbase.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 2 | eqeq1i 2743 | . . . 4 ⊢ (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅) |
4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ¬ (LPlanes‘𝐾) = ∅) |
5 | fvprc 6766 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LPlanes‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝐾 ∈ V) |
7 | lplnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2738 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
10 | 7, 8, 9, 2 | islpln 37544 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 499 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 685 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∅c0 4256 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 ⋖ ccvr 37276 LLinesclln 37505 LPlanesclpl 37506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-lplanes 37513 |
This theorem is referenced by: islpln2 37550 llnmlplnN 37553 lplnnle2at 37555 lplnneat 37559 lplnnelln 37560 llncvrlpln2 37571 2lplnmN 37573 lplncmp 37576 lplnexatN 37577 lplnexllnN 37578 2llnjaN 37580 islvol3 37590 lvoli3 37591 lvolnle3at 37596 lplncvrlvol2 37629 lplncvrlvol 37630 lvolcmp 37631 2lplnm2N 37635 2lplnmj 37636 dalemyeb 37663 dalem10 37687 dalem16 37693 dalem44 37730 dalem55 37741 |
Copyright terms: Public domain | W3C validator |