| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnbase | Structured version Visualization version GIF version | ||
| Description: A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnbase.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnbase | ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4315 | . . . 4 ⊢ (𝑋 ∈ 𝑃 → ¬ 𝑃 = ∅) | |
| 2 | lplnbase.p | . . . . 5 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 3 | 2 | eqeq1i 2740 | . . . 4 ⊢ (𝑃 = ∅ ↔ (LPlanes‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑃 → ¬ (LPlanes‘𝐾) = ∅) |
| 5 | fvprc 6868 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LPlanes‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑃 → 𝐾 ∈ V) |
| 7 | lplnbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2735 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2735 | . . . 4 ⊢ (LLines‘𝐾) = (LLines‘𝐾) | |
| 10 | 7, 8, 9, 2 | islpln 39549 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LLines‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 ⋖ ccvr 39280 LLinesclln 39510 LPlanesclpl 39511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-lplanes 39518 |
| This theorem is referenced by: islpln2 39555 llnmlplnN 39558 lplnnle2at 39560 lplnneat 39564 lplnnelln 39565 llncvrlpln2 39576 2lplnmN 39578 lplncmp 39581 lplnexatN 39582 lplnexllnN 39583 2llnjaN 39585 islvol3 39595 lvoli3 39596 lvolnle3at 39601 lplncvrlvol2 39634 lplncvrlvol 39635 lvolcmp 39636 2lplnm2N 39640 2lplnmj 39641 dalemyeb 39668 dalem10 39692 dalem16 39698 dalem44 39735 dalem55 39746 |
| Copyright terms: Public domain | W3C validator |