| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnset | Structured version Visualization version GIF version | ||
| Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnset | ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3501 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 2 | lplnset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 3 | fveq2 6906 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | lplnset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2795 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | fveq2 6906 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾)) | |
| 7 | lplnset.n | . . . . . . 7 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2795 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁) |
| 9 | fveq2 6906 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
| 10 | lplnset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 11 | 9, 10 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
| 12 | 11 | breqd 5154 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
| 13 | 8, 12 | rexeqbidv 3347 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥)) |
| 14 | 5, 13 | rabeqbidv 3455 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 15 | df-lplanes 39501 | . . . 4 ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
| 16 | 4 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex 5339 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ∈ V |
| 18 | 14, 15, 17 | fvmpt 7016 | . . 3 ⊢ (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 19 | 2, 18 | eqtrid 2789 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 Vcvv 3480 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 ⋖ ccvr 39263 LLinesclln 39493 LPlanesclpl 39494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-lplanes 39501 |
| This theorem is referenced by: islpln 39532 |
| Copyright terms: Public domain | W3C validator |