![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnset | Structured version Visualization version GIF version |
Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnset | ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3458 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
2 | lplnset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | fveq2 6545 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
4 | lplnset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | syl6eqr 2851 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
6 | fveq2 6545 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾)) | |
7 | lplnset.n | . . . . . . 7 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 6, 7 | syl6eqr 2851 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁) |
9 | fveq2 6545 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
10 | lplnset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
11 | 9, 10 | syl6eqr 2851 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
12 | 11 | breqd 4979 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
13 | 8, 12 | rexeqbidv 3364 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥)) |
14 | 5, 13 | rabeqbidv 3433 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
15 | df-lplanes 36187 | . . . 4 ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
16 | 4 | fvexi 6559 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 16 | rabex 5133 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ∈ V |
18 | 14, 15, 17 | fvmpt 6642 | . . 3 ⊢ (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
19 | 2, 18 | syl5eq 2845 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 {crab 3111 Vcvv 3440 class class class wbr 4968 ‘cfv 6232 Basecbs 16316 ⋖ ccvr 35950 LLinesclln 36179 LPlanesclpl 36180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-iota 6196 df-fun 6234 df-fv 6240 df-lplanes 36187 |
This theorem is referenced by: islpln 36218 |
Copyright terms: Public domain | W3C validator |