Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnset Structured version   Visualization version   GIF version

Theorem lplnset 39486
Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnset (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Distinct variable groups:   𝑦,𝑁   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem lplnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐾𝐴𝐾 ∈ V)
2 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
3 fveq2 6920 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lplnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2798 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6920 . . . . . . 7 (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾))
7 lplnset.n . . . . . . 7 𝑁 = (LLines‘𝐾)
86, 7eqtr4di 2798 . . . . . 6 (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁)
9 fveq2 6920 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 lplnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2798 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5177 . . . . . 6 (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥𝑦𝐶𝑥))
138, 12rexeqbidv 3355 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑥))
145, 13rabeqbidv 3462 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
15 df-lplanes 39456 . . . 4 LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥})
164fvexi 6934 . . . . 5 𝐵 ∈ V
1716rabex 5357 . . . 4 {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ∈ V
1814, 15, 17fvmpt 7029 . . 3 (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
192, 18eqtrid 2792 . 2 (𝐾 ∈ V → 𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
201, 19syl 17 1 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488   class class class wbr 5166  cfv 6573  Basecbs 17258  ccvr 39218  LLinesclln 39448  LPlanesclpl 39449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-lplanes 39456
This theorem is referenced by:  islpln  39487
  Copyright terms: Public domain W3C validator