Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnset Structured version   Visualization version   GIF version

Theorem lplnset 37543
Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnset (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Distinct variable groups:   𝑦,𝑁   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem lplnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐾𝐴𝐾 ∈ V)
2 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
3 fveq2 6774 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lplnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2796 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6774 . . . . . . 7 (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾))
7 lplnset.n . . . . . . 7 𝑁 = (LLines‘𝐾)
86, 7eqtr4di 2796 . . . . . 6 (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁)
9 fveq2 6774 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 lplnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2796 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5085 . . . . . 6 (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥𝑦𝐶𝑥))
138, 12rexeqbidv 3337 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑥))
145, 13rabeqbidv 3420 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
15 df-lplanes 37513 . . . 4 LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥})
164fvexi 6788 . . . . 5 𝐵 ∈ V
1716rabex 5256 . . . 4 {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ∈ V
1814, 15, 17fvmpt 6875 . . 3 (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
192, 18eqtrid 2790 . 2 (𝐾 ∈ V → 𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
201, 19syl 17 1 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432   class class class wbr 5074  cfv 6433  Basecbs 16912  ccvr 37276  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-lplanes 37513
This theorem is referenced by:  islpln  37544
  Copyright terms: Public domain W3C validator