Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnset Structured version   Visualization version   GIF version

Theorem lplnset 38269
Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.)
Hypotheses
Ref Expression
lplnset.b 𝐵 = (Base‘𝐾)
lplnset.c 𝐶 = ( ⋖ ‘𝐾)
lplnset.n 𝑁 = (LLines‘𝐾)
lplnset.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnset (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Distinct variable groups:   𝑦,𝑁   𝑥,𝐵   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑁(𝑥)

Proof of Theorem lplnset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐾𝐴𝐾 ∈ V)
2 lplnset.p . . 3 𝑃 = (LPlanes‘𝐾)
3 fveq2 6879 . . . . . 6 (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾))
4 lplnset.b . . . . . 6 𝐵 = (Base‘𝐾)
53, 4eqtr4di 2790 . . . . 5 (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵)
6 fveq2 6879 . . . . . . 7 (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾))
7 lplnset.n . . . . . . 7 𝑁 = (LLines‘𝐾)
86, 7eqtr4di 2790 . . . . . 6 (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁)
9 fveq2 6879 . . . . . . . 8 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾))
10 lplnset.c . . . . . . . 8 𝐶 = ( ⋖ ‘𝐾)
119, 10eqtr4di 2790 . . . . . . 7 (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶)
1211breqd 5153 . . . . . 6 (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥𝑦𝐶𝑥))
138, 12rexeqbidv 3343 . . . . 5 (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦𝑁 𝑦𝐶𝑥))
145, 13rabeqbidv 3449 . . . 4 (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
15 df-lplanes 38239 . . . 4 LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥})
164fvexi 6893 . . . . 5 𝐵 ∈ V
1716rabex 5326 . . . 4 {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥} ∈ V
1814, 15, 17fvmpt 6985 . . 3 (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
192, 18eqtrid 2784 . 2 (𝐾 ∈ V → 𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
201, 19syl 17 1 (𝐾𝐴𝑃 = {𝑥𝐵 ∣ ∃𝑦𝑁 𝑦𝐶𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wrex 3070  {crab 3432  Vcvv 3474   class class class wbr 5142  cfv 6533  Basecbs 17128  ccvr 38001  LLinesclln 38231  LPlanesclpl 38232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-iota 6485  df-fun 6535  df-fv 6541  df-lplanes 38239
This theorem is referenced by:  islpln  38270
  Copyright terms: Public domain W3C validator