![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnset | Structured version Visualization version GIF version |
Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
Ref | Expression |
---|---|
lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnset | ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
2 | lplnset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | fveq2 6879 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
4 | lplnset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | 3, 4 | eqtr4di 2790 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
6 | fveq2 6879 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾)) | |
7 | lplnset.n | . . . . . . 7 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | 6, 7 | eqtr4di 2790 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁) |
9 | fveq2 6879 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
10 | lplnset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
11 | 9, 10 | eqtr4di 2790 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
12 | 11 | breqd 5153 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
13 | 8, 12 | rexeqbidv 3343 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥)) |
14 | 5, 13 | rabeqbidv 3449 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
15 | df-lplanes 38239 | . . . 4 ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
16 | 4 | fvexi 6893 | . . . . 5 ⊢ 𝐵 ∈ V |
17 | 16 | rabex 5326 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ∈ V |
18 | 14, 15, 17 | fvmpt 6985 | . . 3 ⊢ (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
19 | 2, 18 | eqtrid 2784 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 {crab 3432 Vcvv 3474 class class class wbr 5142 ‘cfv 6533 Basecbs 17128 ⋖ ccvr 38001 LLinesclln 38231 LPlanesclpl 38232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-iota 6485 df-fun 6535 df-fv 6541 df-lplanes 38239 |
This theorem is referenced by: islpln 38270 |
Copyright terms: Public domain | W3C validator |