| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnset | Structured version Visualization version GIF version | ||
| Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lplnset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lplnset.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnset | ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | |
| 2 | lplnset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = (Base‘𝐾)) | |
| 4 | lplnset.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | 3, 4 | eqtr4di 2783 | . . . . 5 ⊢ (𝑘 = 𝐾 → (Base‘𝑘) = 𝐵) |
| 6 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = (LLines‘𝐾)) | |
| 7 | lplnset.n | . . . . . . 7 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | 6, 7 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (LLines‘𝑘) = 𝑁) |
| 9 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = ( ⋖ ‘𝐾)) | |
| 10 | lplnset.c | . . . . . . . 8 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → ( ⋖ ‘𝑘) = 𝐶) |
| 12 | 11 | breqd 5121 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑦( ⋖ ‘𝑘)𝑥 ↔ 𝑦𝐶𝑥)) |
| 13 | 8, 12 | rexeqbidv 3322 | . . . . 5 ⊢ (𝑘 = 𝐾 → (∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥 ↔ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥)) |
| 14 | 5, 13 | rabeqbidv 3427 | . . . 4 ⊢ (𝑘 = 𝐾 → {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥} = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 15 | df-lplanes 39500 | . . . 4 ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑦 ∈ (LLines‘𝑘)𝑦( ⋖ ‘𝑘)𝑥}) | |
| 16 | 4 | fvexi 6875 | . . . . 5 ⊢ 𝐵 ∈ V |
| 17 | 16 | rabex 5297 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥} ∈ V |
| 18 | 14, 15, 17 | fvmpt 6971 | . . 3 ⊢ (𝐾 ∈ V → (LPlanes‘𝐾) = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 19 | 2, 18 | eqtrid 2777 | . 2 ⊢ (𝐾 ∈ V → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| 20 | 1, 19 | syl 17 | 1 ⊢ (𝐾 ∈ 𝐴 → 𝑃 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑁 𝑦𝐶𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 ⋖ ccvr 39262 LLinesclln 39492 LPlanesclpl 39493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-lplanes 39500 |
| This theorem is referenced by: islpln 39531 |
| Copyright terms: Public domain | W3C validator |