Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnle2at Structured version   Visualization version   GIF version

Theorem lplnnle2at 37555
Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lplnnle2at.l = (le‘𝐾)
lplnnle2at.j = (join‘𝐾)
lplnnle2at.a 𝐴 = (Atoms‘𝐾)
lplnnle2at.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnle2at ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))

Proof of Theorem lplnnle2at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1193 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → 𝑋𝑃)
2 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2738 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2738 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
5 lplnnle2at.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
62, 3, 4, 5islpln 37544 . . . . 5 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76adantr 481 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 231 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 496 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7282 . . . . . . . . 9 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
1110breq2d 5086 . . . . . . . 8 (𝑄 = 𝑅 → (𝑋 (𝑄 𝑅) ↔ 𝑋 (𝑅 𝑅)))
1211notbid 318 . . . . . . 7 (𝑄 = 𝑅 → (¬ 𝑋 (𝑄 𝑅) ↔ ¬ 𝑋 (𝑅 𝑅)))
13 simpl1 1190 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
14 simpl3l 1227 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (LLines‘𝐾))
15 simpl22 1251 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝐴)
16 simpl23 1252 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑅𝐴)
17 simpr 485 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝑅)
18 lplnnle2at.j . . . . . . . . . . 11 = (join‘𝐾)
19 lplnnle2at.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
2018, 19, 4llni2 37526 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
2113, 15, 16, 17, 20syl31anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
22 eqid 2738 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
2322, 4llnnlt 37537 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ (𝑄 𝑅) ∈ (LLines‘𝐾)) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
2413, 14, 21, 23syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
252, 4llnbase 37523 . . . . . . . . . . 11 (𝑦 ∈ (LLines‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (Base‘𝐾))
27 simpl21 1250 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋𝑃)
282, 5lplnbase 37548 . . . . . . . . . . 11 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2927, 28syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋 ∈ (Base‘𝐾))
30 simpl3r 1228 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦( ⋖ ‘𝐾)𝑋)
312, 22, 3cvrlt 37284 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3213, 26, 29, 30, 31syl31anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦(lt‘𝐾)𝑋)
33 hlpos 37380 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3413, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ Poset)
352, 18, 19hlatjcl 37381 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3613, 15, 16, 35syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (Base‘𝐾))
37 lplnnle2at.l . . . . . . . . . . 11 = (le‘𝐾)
382, 37, 22pltletr 18061 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
3934, 26, 29, 36, 38syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4032, 39mpand 692 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4124, 40mtod 197 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑋 (𝑄 𝑅))
42 simp1 1135 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
43 simp3l 1200 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LLines‘𝐾))
44 simp23 1207 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
4537, 19, 4llnnleat 37527 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → ¬ 𝑦 𝑅)
4642, 43, 44, 45syl3anc 1370 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 𝑅)
4743, 25syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
48 simp21 1205 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑃)
4948, 28syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
50 simp3r 1201 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
5142, 47, 49, 50, 31syl31anc 1372 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
52333ad2ant1 1132 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
532, 19atbase 37303 . . . . . . . . . . . . 13 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5444, 53syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
552, 37, 22pltletr 18061 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5652, 47, 49, 54, 55syl13anc 1371 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5751, 56mpand 692 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦(lt‘𝐾)𝑅))
5837, 22pltle 18051 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
5942, 43, 44, 58syl3anc 1370 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
6057, 59syld 47 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦 𝑅))
6146, 60mtod 197 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 𝑅)
6218, 19hlatjidm 37383 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
6342, 44, 62syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 𝑅) = 𝑅)
6463breq2d 5086 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑅 𝑅) ↔ 𝑋 𝑅))
6561, 64mtbird 325 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑅 𝑅))
6612, 41, 65pm2.61ne 3030 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
67663exp 1118 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → ((𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 (𝑄 𝑅))))
6867exp4a 432 . . . 4 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))))
6968imp 407 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅))))
7069rexlimdv 3212 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))
719, 70mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  Posetcpo 18025  ltcplt 18026  joincjn 18029  ccvr 37276  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  lplnnleat  37556  lplnnlelln  37557  2atnelpln  37558  lvolnle3at  37596
  Copyright terms: Public domain W3C validator