Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnle2at Structured version   Visualization version   GIF version

Theorem lplnnle2at 39560
Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lplnnle2at.l = (le‘𝐾)
lplnnle2at.j = (join‘𝐾)
lplnnle2at.a 𝐴 = (Atoms‘𝐾)
lplnnle2at.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnle2at ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))

Proof of Theorem lplnnle2at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → 𝑋𝑃)
2 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2735 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2735 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
5 lplnnle2at.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
62, 3, 4, 5islpln 39549 . . . . 5 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 232 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 495 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7412 . . . . . . . . 9 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
1110breq2d 5131 . . . . . . . 8 (𝑄 = 𝑅 → (𝑋 (𝑄 𝑅) ↔ 𝑋 (𝑅 𝑅)))
1211notbid 318 . . . . . . 7 (𝑄 = 𝑅 → (¬ 𝑋 (𝑄 𝑅) ↔ ¬ 𝑋 (𝑅 𝑅)))
13 simpl1 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
14 simpl3l 1229 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (LLines‘𝐾))
15 simpl22 1253 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝐴)
16 simpl23 1254 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑅𝐴)
17 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝑅)
18 lplnnle2at.j . . . . . . . . . . 11 = (join‘𝐾)
19 lplnnle2at.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
2018, 19, 4llni2 39531 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
2113, 15, 16, 17, 20syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
22 eqid 2735 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
2322, 4llnnlt 39542 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ (𝑄 𝑅) ∈ (LLines‘𝐾)) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
2413, 14, 21, 23syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
252, 4llnbase 39528 . . . . . . . . . . 11 (𝑦 ∈ (LLines‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (Base‘𝐾))
27 simpl21 1252 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋𝑃)
282, 5lplnbase 39553 . . . . . . . . . . 11 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2927, 28syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋 ∈ (Base‘𝐾))
30 simpl3r 1230 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦( ⋖ ‘𝐾)𝑋)
312, 22, 3cvrlt 39288 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3213, 26, 29, 30, 31syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦(lt‘𝐾)𝑋)
33 hlpos 39384 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3413, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ Poset)
352, 18, 19hlatjcl 39385 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3613, 15, 16, 35syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (Base‘𝐾))
37 lplnnle2at.l . . . . . . . . . . 11 = (le‘𝐾)
382, 37, 22pltletr 18353 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
3934, 26, 29, 36, 38syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4032, 39mpand 695 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4124, 40mtod 198 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑋 (𝑄 𝑅))
42 simp1 1136 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
43 simp3l 1202 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LLines‘𝐾))
44 simp23 1209 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
4537, 19, 4llnnleat 39532 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → ¬ 𝑦 𝑅)
4642, 43, 44, 45syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 𝑅)
4743, 25syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
48 simp21 1207 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑃)
4948, 28syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
50 simp3r 1203 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
5142, 47, 49, 50, 31syl31anc 1375 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
52333ad2ant1 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
532, 19atbase 39307 . . . . . . . . . . . . 13 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5444, 53syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
552, 37, 22pltletr 18353 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5652, 47, 49, 54, 55syl13anc 1374 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5751, 56mpand 695 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦(lt‘𝐾)𝑅))
5837, 22pltle 18343 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
5942, 43, 44, 58syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
6057, 59syld 47 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦 𝑅))
6146, 60mtod 198 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 𝑅)
6218, 19hlatjidm 39387 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
6342, 44, 62syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 𝑅) = 𝑅)
6463breq2d 5131 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑅 𝑅) ↔ 𝑋 𝑅))
6561, 64mtbird 325 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑅 𝑅))
6612, 41, 65pm2.61ne 3017 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
67663exp 1119 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → ((𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 (𝑄 𝑅))))
6867exp4a 431 . . . 4 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))))
6968imp 406 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅))))
7069rexlimdv 3139 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))
719, 70mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  Posetcpo 18319  ltcplt 18320  joincjn 18323  ccvr 39280  Atomscatm 39281  HLchlt 39368  LLinesclln 39510  LPlanesclpl 39511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518
This theorem is referenced by:  lplnnleat  39561  lplnnlelln  39562  2atnelpln  39563  lvolnle3at  39601
  Copyright terms: Public domain W3C validator