Step | Hyp | Ref
| Expression |
1 | | simpr1 1193 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑋 ∈ 𝑃) |
2 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | eqid 2738 |
. . . . . 6
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
4 | | eqid 2738 |
. . . . . 6
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
5 | | lplnnle2at.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
6 | 2, 3, 4, 5 | islpln 37544 |
. . . . 5
⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))) |
7 | 6 | adantr 481 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))) |
8 | 1, 7 | mpbid 231 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)) |
9 | 8 | simprd 496 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋) |
10 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑄 = 𝑅 → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑅)) |
11 | 10 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑄 = 𝑅 → (𝑋 ≤ (𝑄 ∨ 𝑅) ↔ 𝑋 ≤ (𝑅 ∨ 𝑅))) |
12 | 11 | notbid 318 |
. . . . . . 7
⊢ (𝑄 = 𝑅 → (¬ 𝑋 ≤ (𝑄 ∨ 𝑅) ↔ ¬ 𝑋 ≤ (𝑅 ∨ 𝑅))) |
13 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝐾 ∈ HL) |
14 | | simpl3l 1227 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑦 ∈ (LLines‘𝐾)) |
15 | | simpl22 1251 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ∈ 𝐴) |
16 | | simpl23 1252 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑅 ∈ 𝐴) |
17 | | simpr 485 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑄 ≠ 𝑅) |
18 | | lplnnle2at.j |
. . . . . . . . . . 11
⊢ ∨ =
(join‘𝐾) |
19 | | lplnnle2at.a |
. . . . . . . . . . 11
⊢ 𝐴 = (Atoms‘𝐾) |
20 | 18, 19, 4 | llni2 37526 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑄 ≠ 𝑅) → (𝑄 ∨ 𝑅) ∈ (LLines‘𝐾)) |
21 | 13, 15, 16, 17, 20 | syl31anc 1372 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ∨ 𝑅) ∈ (LLines‘𝐾)) |
22 | | eqid 2738 |
. . . . . . . . . 10
⊢
(lt‘𝐾) =
(lt‘𝐾) |
23 | 22, 4 | llnnlt 37537 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (LLines‘𝐾)) → ¬ 𝑦(lt‘𝐾)(𝑄 ∨ 𝑅)) |
24 | 13, 14, 21, 23 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → ¬ 𝑦(lt‘𝐾)(𝑄 ∨ 𝑅)) |
25 | 2, 4 | llnbase 37523 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (LLines‘𝐾) → 𝑦 ∈ (Base‘𝐾)) |
26 | 14, 25 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑦 ∈ (Base‘𝐾)) |
27 | | simpl21 1250 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑋 ∈ 𝑃) |
28 | 2, 5 | lplnbase 37548 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
29 | 27, 28 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑋 ∈ (Base‘𝐾)) |
30 | | simpl3r 1228 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑦( ⋖ ‘𝐾)𝑋) |
31 | 2, 22, 3 | cvrlt 37284 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋) |
32 | 13, 26, 29, 30, 31 | syl31anc 1372 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝑦(lt‘𝐾)𝑋) |
33 | | hlpos 37380 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) |
34 | 13, 33 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → 𝐾 ∈ Poset) |
35 | 2, 18, 19 | hlatjcl 37381 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
36 | 13, 15, 16, 35 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
37 | | lplnnle2at.l |
. . . . . . . . . . 11
⊢ ≤ =
(le‘𝐾) |
38 | 2, 37, 22 | pltletr 18061 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋 ∧ 𝑋 ≤ (𝑄 ∨ 𝑅)) → 𝑦(lt‘𝐾)(𝑄 ∨ 𝑅))) |
39 | 34, 26, 29, 36, 38 | syl13anc 1371 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → ((𝑦(lt‘𝐾)𝑋 ∧ 𝑋 ≤ (𝑄 ∨ 𝑅)) → 𝑦(lt‘𝐾)(𝑄 ∨ 𝑅))) |
40 | 32, 39 | mpand 692 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → (𝑋 ≤ (𝑄 ∨ 𝑅) → 𝑦(lt‘𝐾)(𝑄 ∨ 𝑅))) |
41 | 24, 40 | mtod 197 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄 ≠ 𝑅) → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)) |
42 | | simp1 1135 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL) |
43 | | simp3l 1200 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LLines‘𝐾)) |
44 | | simp23 1207 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ 𝐴) |
45 | 37, 19, 4 | llnnleat 37527 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅 ∈ 𝐴) → ¬ 𝑦 ≤ 𝑅) |
46 | 42, 43, 44, 45 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 ≤ 𝑅) |
47 | 43, 25 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾)) |
48 | | simp21 1205 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ 𝑃) |
49 | 48, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾)) |
50 | | simp3r 1201 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋) |
51 | 42, 47, 49, 50, 31 | syl31anc 1372 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋) |
52 | 33 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset) |
53 | 2, 19 | atbase 37303 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
54 | 44, 53 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾)) |
55 | 2, 37, 22 | pltletr 18061 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑅) → 𝑦(lt‘𝐾)𝑅)) |
56 | 52, 47, 49, 54, 55 | syl13anc 1371 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋 ∧ 𝑋 ≤ 𝑅) → 𝑦(lt‘𝐾)𝑅)) |
57 | 51, 56 | mpand 692 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ≤ 𝑅 → 𝑦(lt‘𝐾)𝑅)) |
58 | 37, 22 | pltle 18051 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅 ∈ 𝐴) → (𝑦(lt‘𝐾)𝑅 → 𝑦 ≤ 𝑅)) |
59 | 42, 43, 44, 58 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)𝑅 → 𝑦 ≤ 𝑅)) |
60 | 57, 59 | syld 47 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ≤ 𝑅 → 𝑦 ≤ 𝑅)) |
61 | 46, 60 | mtod 197 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ≤ 𝑅) |
62 | 18, 19 | hlatjidm 37383 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
63 | 42, 44, 62 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 ∨ 𝑅) = 𝑅) |
64 | 63 | breq2d 5086 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ≤ (𝑅 ∨ 𝑅) ↔ 𝑋 ≤ 𝑅)) |
65 | 61, 64 | mtbird 325 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ≤ (𝑅 ∨ 𝑅)) |
66 | 12, 41, 65 | pm2.61ne 3030 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)) |
67 | 66 | 3exp 1118 |
. . . . 5
⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ((𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)))) |
68 | 67 | exp4a 432 |
. . . 4
⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅))))) |
69 | 68 | imp 407 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)))) |
70 | 69 | rexlimdv 3212 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅))) |
71 | 9, 70 | mpd 15 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ 𝑋 ≤ (𝑄 ∨ 𝑅)) |