Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnle2at Structured version   Visualization version   GIF version

Theorem lplnnle2at 39542
Description: A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lplnnle2at.l = (le‘𝐾)
lplnnle2at.j = (join‘𝐾)
lplnnle2at.a 𝐴 = (Atoms‘𝐾)
lplnnle2at.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnle2at ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))

Proof of Theorem lplnnle2at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → 𝑋𝑃)
2 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2730 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2730 . . . . . 6 (LLines‘𝐾) = (LLines‘𝐾)
5 lplnnle2at.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
62, 3, 4, 5islpln 39531 . . . . 5 (𝐾 ∈ HL → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋𝑃 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 232 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 495 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7397 . . . . . . . . 9 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
1110breq2d 5122 . . . . . . . 8 (𝑄 = 𝑅 → (𝑋 (𝑄 𝑅) ↔ 𝑋 (𝑅 𝑅)))
1211notbid 318 . . . . . . 7 (𝑄 = 𝑅 → (¬ 𝑋 (𝑄 𝑅) ↔ ¬ 𝑋 (𝑅 𝑅)))
13 simpl1 1192 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ HL)
14 simpl3l 1229 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (LLines‘𝐾))
15 simpl22 1253 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝐴)
16 simpl23 1254 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑅𝐴)
17 simpr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑄𝑅)
18 lplnnle2at.j . . . . . . . . . . 11 = (join‘𝐾)
19 lplnnle2at.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
2018, 19, 4llni2 39513 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
2113, 15, 16, 17, 20syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (LLines‘𝐾))
22 eqid 2730 . . . . . . . . . 10 (lt‘𝐾) = (lt‘𝐾)
2322, 4llnnlt 39524 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ (𝑄 𝑅) ∈ (LLines‘𝐾)) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
2413, 14, 21, 23syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑦(lt‘𝐾)(𝑄 𝑅))
252, 4llnbase 39510 . . . . . . . . . . 11 (𝑦 ∈ (LLines‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦 ∈ (Base‘𝐾))
27 simpl21 1252 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋𝑃)
282, 5lplnbase 39535 . . . . . . . . . . 11 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
2927, 28syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑋 ∈ (Base‘𝐾))
30 simpl3r 1230 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦( ⋖ ‘𝐾)𝑋)
312, 22, 3cvrlt 39270 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3213, 26, 29, 30, 31syl31anc 1375 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝑦(lt‘𝐾)𝑋)
33 hlpos 39366 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3413, 33syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → 𝐾 ∈ Poset)
352, 18, 19hlatjcl 39367 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
3613, 15, 16, 35syl3anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑄 𝑅) ∈ (Base‘𝐾))
37 lplnnle2at.l . . . . . . . . . . 11 = (le‘𝐾)
382, 37, 22pltletr 18309 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
3934, 26, 29, 36, 38syl13anc 1374 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4032, 39mpand 695 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
4124, 40mtod 198 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑄𝑅) → ¬ 𝑋 (𝑄 𝑅))
42 simp1 1136 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
43 simp3l 1202 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LLines‘𝐾))
44 simp23 1209 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
4537, 19, 4llnnleat 39514 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → ¬ 𝑦 𝑅)
4642, 43, 44, 45syl3anc 1373 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 𝑅)
4743, 25syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
48 simp21 1207 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑃)
4948, 28syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
50 simp3r 1203 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
5142, 47, 49, 50, 31syl31anc 1375 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
52333ad2ant1 1133 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
532, 19atbase 39289 . . . . . . . . . . . . 13 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
5444, 53syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
552, 37, 22pltletr 18309 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5652, 47, 49, 54, 55syl13anc 1374 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 𝑅) → 𝑦(lt‘𝐾)𝑅))
5751, 56mpand 695 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦(lt‘𝐾)𝑅))
5837, 22pltle 18299 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LLines‘𝐾) ∧ 𝑅𝐴) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
5942, 43, 44, 58syl3anc 1373 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)𝑅𝑦 𝑅))
6057, 59syld 47 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 𝑅𝑦 𝑅))
6146, 60mtod 198 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 𝑅)
6218, 19hlatjidm 39369 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
6342, 44, 62syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 𝑅) = 𝑅)
6463breq2d 5122 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑅 𝑅) ↔ 𝑋 𝑅))
6561, 64mtbird 325 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑅 𝑅))
6612, 41, 65pm2.61ne 3011 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
67663exp 1119 . . . . 5 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → ((𝑦 ∈ (LLines‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 (𝑄 𝑅))))
6867exp4a 431 . . . 4 (𝐾 ∈ HL → ((𝑋𝑃𝑄𝐴𝑅𝐴) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))))
6968imp 406 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LLines‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅))))
7069rexlimdv 3133 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LLines‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 (𝑄 𝑅)))
719, 70mpd 15 1 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑄𝐴𝑅𝐴)) → ¬ 𝑋 (𝑄 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  Posetcpo 18275  ltcplt 18276  joincjn 18279  ccvr 39262  Atomscatm 39263  HLchlt 39350  LLinesclln 39492  LPlanesclpl 39493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500
This theorem is referenced by:  lplnnleat  39543  lplnnlelln  39544  2atnelpln  39545  lvolnle3at  39583
  Copyright terms: Public domain W3C validator