Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln3 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
Ref | Expression |
---|---|
islpln3.b | ⊢ 𝐵 = (Base‘𝐾) |
islpln3.l | ⊢ ≤ = (le‘𝐾) |
islpln3.j | ⊢ ∨ = (join‘𝐾) |
islpln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
islpln3.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2736 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | islpln3.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | islpln3.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
5 | 1, 2, 3, 4 | islpln4 37850 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋)) |
6 | simpll 764 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝐾 ∈ HL) | |
7 | 1, 3 | llnbase 37828 | . . . . . 6 ⊢ (𝑦 ∈ 𝑁 → 𝑦 ∈ 𝐵) |
8 | 7 | adantl 482 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝐵) |
9 | simplr 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ 𝐵) | |
10 | islpln3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
11 | islpln3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
12 | islpln3.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 1, 10, 11, 2, 12 | cvrval3 37732 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
14 | 6, 8, 9, 13 | syl3anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
15 | eqcom 2743 | . . . . . . 7 ⊢ ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝)) | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝))) |
17 | 16 | anbi2d 629 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
18 | 17 | rexbidva 3169 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
19 | 14, 18 | bitrd 278 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
20 | 19 | rexbidva 3169 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
21 | 5, 20 | bitrd 278 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 class class class wbr 5093 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 lecple 17067 joincjn 18127 ⋖ ccvr 37580 Atomscatm 37581 HLchlt 37668 LLinesclln 37810 LPlanesclpl 37811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-lat 18248 df-clat 18315 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 |
This theorem is referenced by: islpln5 37854 lplnexllnN 37883 |
Copyright terms: Public domain | W3C validator |