Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpln3 Structured version   Visualization version   GIF version

Theorem islpln3 38399
Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.)
Hypotheses
Ref Expression
islpln3.b 𝐡 = (Baseβ€˜πΎ)
islpln3.l ≀ = (leβ€˜πΎ)
islpln3.j ∨ = (joinβ€˜πΎ)
islpln3.a 𝐴 = (Atomsβ€˜πΎ)
islpln3.n 𝑁 = (LLinesβ€˜πΎ)
islpln3.p 𝑃 = (LPlanesβ€˜πΎ)
Assertion
Ref Expression
islpln3 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘¦ ∈ 𝑁 βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
Distinct variable groups:   𝐴,𝑝   𝑦,𝑝,𝐡   𝐾,𝑝,𝑦   ≀ ,𝑝   𝑁,𝑝,𝑦   𝑋,𝑝,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑦,𝑝)   ∨ (𝑦,𝑝)   ≀ (𝑦)

Proof of Theorem islpln3
StepHypRef Expression
1 islpln3.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2732 . . 3 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
3 islpln3.n . . 3 𝑁 = (LLinesβ€˜πΎ)
4 islpln3.p . . 3 𝑃 = (LPlanesβ€˜πΎ)
51, 2, 3, 4islpln4 38397 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘¦ ∈ 𝑁 𝑦( β‹– β€˜πΎ)𝑋))
6 simpll 765 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ 𝐾 ∈ HL)
71, 3llnbase 38375 . . . . . 6 (𝑦 ∈ 𝑁 β†’ 𝑦 ∈ 𝐡)
87adantl 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ 𝑦 ∈ 𝐡)
9 simplr 767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ 𝑋 ∈ 𝐡)
10 islpln3.l . . . . . 6 ≀ = (leβ€˜πΎ)
11 islpln3.j . . . . . 6 ∨ = (joinβ€˜πΎ)
12 islpln3.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
131, 10, 11, 2, 12cvrval3 38279 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦 ∈ 𝐡 ∧ 𝑋 ∈ 𝐡) β†’ (𝑦( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋)))
146, 8, 9, 13syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ (𝑦( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋)))
15 eqcom 2739 . . . . . . 7 ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝))
1615a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) β†’ ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝)))
1716anbi2d 629 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) β†’ ((Β¬ 𝑝 ≀ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
1817rexbidva 3176 . . . 4 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
1914, 18bitrd 278 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) ∧ 𝑦 ∈ 𝑁) β†’ (𝑦( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
2019rexbidva 3176 . 2 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (βˆƒπ‘¦ ∈ 𝑁 𝑦( β‹– β€˜πΎ)𝑋 ↔ βˆƒπ‘¦ ∈ 𝑁 βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
215, 20bitrd 278 1 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑃 ↔ βˆƒπ‘¦ ∈ 𝑁 βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝 ≀ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263   β‹– ccvr 38127  Atomscatm 38128  HLchlt 38215  LLinesclln 38357  LPlanesclpl 38358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365
This theorem is referenced by:  islpln5  38401  lplnexllnN  38430
  Copyright terms: Public domain W3C validator