| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| islpln3.b | ⊢ 𝐵 = (Base‘𝐾) |
| islpln3.l | ⊢ ≤ = (le‘𝐾) |
| islpln3.j | ⊢ ∨ = (join‘𝐾) |
| islpln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| islpln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
| islpln3.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| islpln3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islpln3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 3 | islpln3.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
| 4 | islpln3.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 5 | 1, 2, 3, 4 | islpln4 39576 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋)) |
| 6 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝐾 ∈ HL) | |
| 7 | 1, 3 | llnbase 39554 | . . . . . 6 ⊢ (𝑦 ∈ 𝑁 → 𝑦 ∈ 𝐵) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝐵) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ 𝐵) | |
| 10 | islpln3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 11 | islpln3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 12 | islpln3.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 1, 10, 11, 2, 12 | cvrval3 39458 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
| 14 | 6, 8, 9, 13 | syl3anc 1373 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
| 15 | eqcom 2738 | . . . . . . 7 ⊢ ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝)) | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝))) |
| 17 | 16 | anbi2d 630 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 18 | 17 | rexbidva 3154 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 19 | 14, 18 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 20 | 19 | rexbidva 3154 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 21 | 5, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 ⋖ ccvr 39307 Atomscatm 39308 HLchlt 39395 LLinesclln 39536 LPlanesclpl 39537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-llines 39543 df-lplanes 39544 |
| This theorem is referenced by: islpln5 39580 lplnexllnN 39609 |
| Copyright terms: Public domain | W3C validator |