| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
| Ref | Expression |
|---|---|
| islpln3.b | ⊢ 𝐵 = (Base‘𝐾) |
| islpln3.l | ⊢ ≤ = (le‘𝐾) |
| islpln3.j | ⊢ ∨ = (join‘𝐾) |
| islpln3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| islpln3.n | ⊢ 𝑁 = (LLines‘𝐾) |
| islpln3.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| islpln3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islpln3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2734 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 3 | islpln3.n | . . 3 ⊢ 𝑁 = (LLines‘𝐾) | |
| 4 | islpln3.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 5 | 1, 2, 3, 4 | islpln4 39479 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋)) |
| 6 | simpll 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝐾 ∈ HL) | |
| 7 | 1, 3 | llnbase 39457 | . . . . . 6 ⊢ (𝑦 ∈ 𝑁 → 𝑦 ∈ 𝐵) |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑦 ∈ 𝐵) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → 𝑋 ∈ 𝐵) | |
| 10 | islpln3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 11 | islpln3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 12 | islpln3.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 13 | 1, 10, 11, 2, 12 | cvrval3 39361 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
| 14 | 6, 8, 9, 13 | syl3anc 1372 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
| 15 | eqcom 2741 | . . . . . . 7 ⊢ ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝)) | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝))) |
| 17 | 16 | anbi2d 630 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 18 | 17 | rexbidva 3160 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 19 | 14, 18 | bitrd 279 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑁) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 20 | 19 | rexbidva 3160 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝑁 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| 21 | 5, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑦 ∈ 𝑁 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 lecple 17265 joincjn 18310 ⋖ ccvr 39209 Atomscatm 39210 HLchlt 39297 LLinesclln 39439 LPlanesclpl 39440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-proset 18293 df-poset 18312 df-plt 18327 df-lub 18343 df-glb 18344 df-join 18345 df-meet 18346 df-p0 18422 df-lat 18429 df-clat 18496 df-oposet 39123 df-ol 39125 df-oml 39126 df-covers 39213 df-ats 39214 df-atl 39245 df-cvlat 39269 df-hlat 39298 df-llines 39446 df-lplanes 39447 |
| This theorem is referenced by: islpln5 39483 lplnexllnN 39512 |
| Copyright terms: Public domain | W3C validator |