Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol Structured version   Visualization version   GIF version

Theorem islvol 38748
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐡 = (Baseβ€˜πΎ)
lvolset.c 𝐢 = ( β‹– β€˜πΎ)
lvolset.p 𝑃 = (LPlanesβ€˜πΎ)
lvolset.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
islvol (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐡(𝑦)   𝐢(𝑦)   𝑉(𝑦)

Proof of Theorem islvol
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 lvolset.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 lvolset.c . . . 4 𝐢 = ( β‹– β€˜πΎ)
3 lvolset.p . . . 4 𝑃 = (LPlanesβ€˜πΎ)
4 lvolset.v . . . 4 𝑉 = (LVolsβ€˜πΎ)
51, 2, 3, 4lvolset 38747 . . 3 (𝐾 ∈ 𝐴 β†’ 𝑉 = {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯})
65eleq2d 2818 . 2 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯}))
7 breq2 5152 . . . 4 (π‘₯ = 𝑋 β†’ (𝑦𝐢π‘₯ ↔ 𝑦𝐢𝑋))
87rexbidv 3177 . . 3 (π‘₯ = 𝑋 β†’ (βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯ ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
98elrab 3683 . 2 (𝑋 ∈ {π‘₯ ∈ 𝐡 ∣ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢π‘₯} ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
106, 9bitrdi 287 1 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆƒwrex 3069  {crab 3431   class class class wbr 5148  β€˜cfv 6543  Basecbs 17149   β‹– ccvr 38436  LPlanesclpl 38667  LVolsclvol 38668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-lvols 38675
This theorem is referenced by:  islvol4  38749  lvoli  38750  lvolbase  38753  lvolnle3at  38757
  Copyright terms: Public domain W3C validator