Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol Structured version   Visualization version   GIF version

Theorem islvol 37514
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑉(𝑦)

Proof of Theorem islvol
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lvolset.b . . . 4 𝐵 = (Base‘𝐾)
2 lvolset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lvolset.p . . . 4 𝑃 = (LPlanes‘𝐾)
4 lvolset.v . . . 4 𝑉 = (LVols‘𝐾)
51, 2, 3, 4lvolset 37513 . . 3 (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
65eleq2d 2824 . 2 (𝐾𝐴 → (𝑋𝑉𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥}))
7 breq2 5074 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3225 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑃 𝑦𝐶𝑥 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
98elrab 3617 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋))
106, 9bitrdi 286 1 (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067   class class class wbr 5070  cfv 6418  Basecbs 16840  ccvr 37203  LPlanesclpl 37433  LVolsclvol 37434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-lvols 37441
This theorem is referenced by:  islvol4  37515  lvoli  37516  lvolbase  37519  lvolnle3at  37523
  Copyright terms: Public domain W3C validator