| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| islvol | ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvolset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lvolset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | lvolset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 4 | lvolset.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 5 | 1, 2, 3, 4 | lvolset 39566 | . . 3 ⊢ (𝐾 ∈ 𝐴 → 𝑉 = {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥}) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥})) |
| 7 | breq2 5111 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦𝐶𝑥 ↔ 𝑦𝐶𝑋)) | |
| 8 | 7 | rexbidv 3157 | . . 3 ⊢ (𝑥 = 𝑋 → (∃𝑦 ∈ 𝑃 𝑦𝐶𝑥 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| 9 | 8 | elrab 3659 | . 2 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐵 ∣ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑥} ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| 10 | 6, 9 | bitrdi 287 | 1 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 ⋖ ccvr 39255 LPlanesclpl 39486 LVolsclvol 39487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-lvols 39494 |
| This theorem is referenced by: islvol4 39568 lvoli 39569 lvolbase 39572 lvolnle3at 39576 |
| Copyright terms: Public domain | W3C validator |