Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol Structured version   Visualization version   GIF version

Theorem islvol 39692
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑉(𝑦)

Proof of Theorem islvol
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lvolset.b . . . 4 𝐵 = (Base‘𝐾)
2 lvolset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lvolset.p . . . 4 𝑃 = (LPlanes‘𝐾)
4 lvolset.v . . . 4 𝑉 = (LVols‘𝐾)
51, 2, 3, 4lvolset 39691 . . 3 (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
65eleq2d 2819 . 2 (𝐾𝐴 → (𝑋𝑉𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥}))
7 breq2 5097 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3157 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑃 𝑦𝐶𝑥 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
98elrab 3643 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋))
106, 9bitrdi 287 1 (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396   class class class wbr 5093  cfv 6486  Basecbs 17122  ccvr 39381  LPlanesclpl 39611  LVolsclvol 39612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-lvols 39619
This theorem is referenced by:  islvol4  39693  lvoli  39694  lvolbase  39697  lvolnle3at  39701
  Copyright terms: Public domain W3C validator