Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol Structured version   Visualization version   GIF version

Theorem islvol 39516
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑉(𝑦)

Proof of Theorem islvol
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lvolset.b . . . 4 𝐵 = (Base‘𝐾)
2 lvolset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
3 lvolset.p . . . 4 𝑃 = (LPlanes‘𝐾)
4 lvolset.v . . . 4 𝑉 = (LVols‘𝐾)
51, 2, 3, 4lvolset 39515 . . 3 (𝐾𝐴𝑉 = {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥})
65eleq2d 2819 . 2 (𝐾𝐴 → (𝑋𝑉𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥}))
7 breq2 5129 . . . 4 (𝑥 = 𝑋 → (𝑦𝐶𝑥𝑦𝐶𝑋))
87rexbidv 3166 . . 3 (𝑥 = 𝑋 → (∃𝑦𝑃 𝑦𝐶𝑥 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
98elrab 3676 . 2 (𝑋 ∈ {𝑥𝐵 ∣ ∃𝑦𝑃 𝑦𝐶𝑥} ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋))
106, 9bitrdi 287 1 (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  {crab 3420   class class class wbr 5125  cfv 6542  Basecbs 17230  ccvr 39204  LPlanesclpl 39435  LVolsclvol 39436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-lvols 39443
This theorem is referenced by:  islvol4  39517  lvoli  39518  lvolbase  39521  lvolnle3at  39525
  Copyright terms: Public domain W3C validator