Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnle3at Structured version   Visualization version   GIF version

Theorem lvolnle3at 37151
Description: A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvolnle3at.l = (le‘𝐾)
lvolnle3at.j = (join‘𝐾)
lvolnle3at.a 𝐴 = (Atoms‘𝐾)
lvolnle3at.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnle3at (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))

Proof of Theorem lvolnle3at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑋𝑉)
2 eqid 2759 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2759 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2759 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
5 lvolnle3at.v . . . . . 6 𝑉 = (LVols‘𝐾)
62, 3, 4, 5islvol 37142 . . . . 5 (𝐾 ∈ HL → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 235 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 500 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7158 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1110oveq1d 7166 . . . . . . . 8 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1211breq2d 5045 . . . . . . 7 (𝑃 = 𝑄 → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 ((𝑄 𝑄) 𝑅)))
1312notbid 322 . . . . . 6 (𝑃 = 𝑄 → (¬ 𝑋 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑋 ((𝑄 𝑄) 𝑅)))
14 simp1l 1195 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
15 simp3l 1199 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LPlanes‘𝐾))
16 simp21 1204 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑃𝐴)
17 simp22 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑄𝐴)
18 lvolnle3at.l . . . . . . . . . . . . 13 = (le‘𝐾)
19 lvolnle3at.j . . . . . . . . . . . . 13 = (join‘𝐾)
20 lvolnle3at.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
2118, 19, 20, 4lplnnle2at 37110 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑃𝐴𝑄𝐴)) → ¬ 𝑦 (𝑃 𝑄))
2214, 15, 16, 17, 21syl13anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 (𝑃 𝑄))
232, 4lplnbase 37103 . . . . . . . . . . . . . . 15 (𝑦 ∈ (LPlanes‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2415, 23syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
25 simp1r 1196 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑉)
262, 5lvolbase 37147 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
28 simp3r 1200 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
29 eqid 2759 . . . . . . . . . . . . . . 15 (lt‘𝐾) = (lt‘𝐾)
302, 29, 3cvrlt 36839 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3114, 24, 27, 28, 30syl31anc 1371 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
32 hlpos 36935 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3314, 32syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
342, 19, 20hlatjcl 36936 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 16, 17, 34syl3anc 1369 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑃 𝑄) ∈ (Base‘𝐾))
362, 18, 29pltletr 17640 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3733, 24, 27, 35, 36syl13anc 1370 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3831, 37mpand 695 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3918, 29pltle 17630 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4014, 15, 35, 39syl3anc 1369 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4138, 40syld 47 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4222, 41mtod 201 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑃 𝑄))
4342adantr 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 (𝑃 𝑄))
44 simprr 773 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
4514hllatd 36933 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Lat)
46 simp23 1206 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
472, 20atbase 36858 . . . . . . . . . . . . . 14 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
492, 18, 19latleeqj2 17733 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5045, 48, 35, 49syl3anc 1369 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5150adantr 485 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5244, 51mpbid 235 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) = (𝑃 𝑄))
5352breq2d 5045 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 (𝑃 𝑄)))
5443, 53mtbird 329 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
5554anassrs 472 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
56 simpl1l 1222 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
57 simpl3l 1226 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑦 ∈ (LPlanes‘𝐾))
58 simpl2 1190 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
59 simpr 489 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
6018, 19, 20, 4lplni2 37106 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6156, 58, 59, 60syl3anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6229, 4lplnnlt 37134 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾)) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
6356, 57, 61, 62syl3anc 1369 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
642, 19latjcl 17720 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6545, 35, 48, 64syl3anc 1369 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
662, 18, 29pltletr 17640 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6733, 24, 27, 65, 66syl13anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6831, 67mpand 695 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6968adantr 485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
7063, 69mtod 201 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7170anassrs 472 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7255, 71pm2.61dan 813 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
73 eqid 2759 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
7473, 19, 20, 4lplnnle2at 37110 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑄𝐴𝑅𝐴)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
7514, 15, 17, 46, 74syl13anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
762, 19, 20hlatjcl 36936 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
7714, 17, 46, 76syl3anc 1369 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑅) ∈ (Base‘𝐾))
782, 18, 29pltletr 17640 . . . . . . . . . . 11 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
7933, 24, 27, 77, 78syl13anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8031, 79mpand 695 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8173, 29pltle 17630 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8214, 15, 77, 81syl3anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8380, 82syld 47 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8475, 83mtod 201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
8519, 20hlatjidm 36938 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
8614, 17, 85syl2anc 588 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑄) = 𝑄)
8786oveq1d 7166 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
8887breq2d 5045 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑄 𝑄) 𝑅) ↔ 𝑋 (𝑄 𝑅)))
8984, 88mtbird 329 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑄 𝑄) 𝑅))
9013, 72, 89pm2.61ne 3037 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
91903expia 1119 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
9291expd 420 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LPlanes‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅))))
9392rexlimdv 3208 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
949, 93mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wrex 3072   class class class wbr 5033  cfv 6336  (class class class)co 7151  Basecbs 16534  lecple 16623  Posetcpo 17609  ltcplt 17610  joincjn 17613  Latclat 17714  ccvr 36831  Atomscatm 36832  HLchlt 36919  LPlanesclpl 37061  LVolsclvol 37062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17597  df-poset 17615  df-plt 17627  df-lub 17643  df-glb 17644  df-join 17645  df-meet 17646  df-p0 17708  df-lat 17715  df-clat 17777  df-oposet 36745  df-ol 36747  df-oml 36748  df-covers 36835  df-ats 36836  df-atl 36867  df-cvlat 36891  df-hlat 36920  df-llines 37067  df-lplanes 37068  df-lvols 37069
This theorem is referenced by:  lvolnleat  37152  lvolnlelln  37153  lvolnlelpln  37154  3atnelvolN  37155  4atlem3  37165  dalem39  37280
  Copyright terms: Public domain W3C validator