Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnle3at Structured version   Visualization version   GIF version

Theorem lvolnle3at 39564
Description: A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvolnle3at.l = (le‘𝐾)
lvolnle3at.j = (join‘𝐾)
lvolnle3at.a 𝐴 = (Atoms‘𝐾)
lvolnle3at.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnle3at (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))

Proof of Theorem lvolnle3at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr 769 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑋𝑉)
2 eqid 2734 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2734 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2734 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
5 lvolnle3at.v . . . . . 6 𝑉 = (LVols‘𝐾)
62, 3, 4, 5islvol 39555 . . . . 5 (𝐾 ∈ HL → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 495 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7437 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1110oveq1d 7445 . . . . . . . 8 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1211breq2d 5159 . . . . . . 7 (𝑃 = 𝑄 → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 ((𝑄 𝑄) 𝑅)))
1312notbid 318 . . . . . 6 (𝑃 = 𝑄 → (¬ 𝑋 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑋 ((𝑄 𝑄) 𝑅)))
14 simp1l 1196 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
15 simp3l 1200 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LPlanes‘𝐾))
16 simp21 1205 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑃𝐴)
17 simp22 1206 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑄𝐴)
18 lvolnle3at.l . . . . . . . . . . . . 13 = (le‘𝐾)
19 lvolnle3at.j . . . . . . . . . . . . 13 = (join‘𝐾)
20 lvolnle3at.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
2118, 19, 20, 4lplnnle2at 39523 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑃𝐴𝑄𝐴)) → ¬ 𝑦 (𝑃 𝑄))
2214, 15, 16, 17, 21syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 (𝑃 𝑄))
232, 4lplnbase 39516 . . . . . . . . . . . . . . 15 (𝑦 ∈ (LPlanes‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2415, 23syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
25 simp1r 1197 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑉)
262, 5lvolbase 39560 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
28 simp3r 1201 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
29 eqid 2734 . . . . . . . . . . . . . . 15 (lt‘𝐾) = (lt‘𝐾)
302, 29, 3cvrlt 39251 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3114, 24, 27, 28, 30syl31anc 1372 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
32 hlpos 39347 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3314, 32syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
342, 19, 20hlatjcl 39348 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 16, 17, 34syl3anc 1370 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑃 𝑄) ∈ (Base‘𝐾))
362, 18, 29pltletr 18400 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3733, 24, 27, 35, 36syl13anc 1371 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3831, 37mpand 695 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3918, 29pltle 18390 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4014, 15, 35, 39syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4138, 40syld 47 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4222, 41mtod 198 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑃 𝑄))
4342adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 (𝑃 𝑄))
44 simprr 773 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
4514hllatd 39345 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Lat)
46 simp23 1207 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
472, 20atbase 39270 . . . . . . . . . . . . . 14 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
492, 18, 19latleeqj2 18509 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5045, 48, 35, 49syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5150adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5244, 51mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) = (𝑃 𝑄))
5352breq2d 5159 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 (𝑃 𝑄)))
5443, 53mtbird 325 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
5554anassrs 467 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
56 simpl1l 1223 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
57 simpl3l 1227 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑦 ∈ (LPlanes‘𝐾))
58 simpl2 1191 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
59 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
6018, 19, 20, 4lplni2 39519 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6156, 58, 59, 60syl3anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6229, 4lplnnlt 39547 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾)) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
6356, 57, 61, 62syl3anc 1370 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
642, 19latjcl 18496 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6545, 35, 48, 64syl3anc 1370 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
662, 18, 29pltletr 18400 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6733, 24, 27, 65, 66syl13anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6831, 67mpand 695 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6968adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
7063, 69mtod 198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7170anassrs 467 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7255, 71pm2.61dan 813 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
73 eqid 2734 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
7473, 19, 20, 4lplnnle2at 39523 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑄𝐴𝑅𝐴)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
7514, 15, 17, 46, 74syl13anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
762, 19, 20hlatjcl 39348 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
7714, 17, 46, 76syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑅) ∈ (Base‘𝐾))
782, 18, 29pltletr 18400 . . . . . . . . . . 11 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
7933, 24, 27, 77, 78syl13anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8031, 79mpand 695 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8173, 29pltle 18390 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8214, 15, 77, 81syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8380, 82syld 47 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8475, 83mtod 198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
8519, 20hlatjidm 39350 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
8614, 17, 85syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑄) = 𝑄)
8786oveq1d 7445 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
8887breq2d 5159 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑄 𝑄) 𝑅) ↔ 𝑋 (𝑄 𝑅)))
8984, 88mtbird 325 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑄 𝑄) 𝑅))
9013, 72, 89pm2.61ne 3024 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
91903expia 1120 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
9291expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LPlanes‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅))))
9392rexlimdv 3150 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
949, 93mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  lecple 17304  Posetcpo 18364  ltcplt 18365  joincjn 18368  Latclat 18488  ccvr 39243  Atomscatm 39244  HLchlt 39331  LPlanesclpl 39474  LVolsclvol 39475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482
This theorem is referenced by:  lvolnleat  39565  lvolnlelln  39566  lvolnlelpln  39567  3atnelvolN  39568  4atlem3  39578  dalem39  39693
  Copyright terms: Public domain W3C validator