Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnle3at Structured version   Visualization version   GIF version

Theorem lvolnle3at 39627
Description: A lattice plane (or lattice line or atom) cannot majorize a lattice volume. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
lvolnle3at.l = (le‘𝐾)
lvolnle3at.j = (join‘𝐾)
lvolnle3at.a 𝐴 = (Atoms‘𝐾)
lvolnle3at.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnle3at (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))

Proof of Theorem lvolnle3at
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑋𝑉)
2 eqid 2731 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2731 . . . . . 6 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
4 eqid 2731 . . . . . 6 (LPlanes‘𝐾) = (LPlanes‘𝐾)
5 lvolnle3at.v . . . . . 6 𝑉 = (LVols‘𝐾)
62, 3, 4, 5islvol 39618 . . . . 5 (𝐾 ∈ HL → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
76ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋𝑉 ↔ (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)))
81, 7mpbid 232 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑋 ∈ (Base‘𝐾) ∧ ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋))
98simprd 495 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋)
10 oveq1 7353 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
1110oveq1d 7361 . . . . . . . 8 (𝑃 = 𝑄 → ((𝑃 𝑄) 𝑅) = ((𝑄 𝑄) 𝑅))
1211breq2d 5103 . . . . . . 7 (𝑃 = 𝑄 → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 ((𝑄 𝑄) 𝑅)))
1312notbid 318 . . . . . 6 (𝑃 = 𝑄 → (¬ 𝑋 ((𝑃 𝑄) 𝑅) ↔ ¬ 𝑋 ((𝑄 𝑄) 𝑅)))
14 simp1l 1198 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ HL)
15 simp3l 1202 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (LPlanes‘𝐾))
16 simp21 1207 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑃𝐴)
17 simp22 1208 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑄𝐴)
18 lvolnle3at.l . . . . . . . . . . . . 13 = (le‘𝐾)
19 lvolnle3at.j . . . . . . . . . . . . 13 = (join‘𝐾)
20 lvolnle3at.a . . . . . . . . . . . . 13 𝐴 = (Atoms‘𝐾)
2118, 19, 20, 4lplnnle2at 39586 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑃𝐴𝑄𝐴)) → ¬ 𝑦 (𝑃 𝑄))
2214, 15, 16, 17, 21syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦 (𝑃 𝑄))
232, 4lplnbase 39579 . . . . . . . . . . . . . . 15 (𝑦 ∈ (LPlanes‘𝐾) → 𝑦 ∈ (Base‘𝐾))
2415, 23syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦 ∈ (Base‘𝐾))
25 simp1r 1199 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋𝑉)
262, 5lvolbase 39623 . . . . . . . . . . . . . . 15 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
2725, 26syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑋 ∈ (Base‘𝐾))
28 simp3r 1203 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦( ⋖ ‘𝐾)𝑋)
29 eqid 2731 . . . . . . . . . . . . . . 15 (lt‘𝐾) = (lt‘𝐾)
302, 29, 3cvrlt 39315 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → 𝑦(lt‘𝐾)𝑋)
3114, 24, 27, 28, 30syl31anc 1375 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑦(lt‘𝐾)𝑋)
32 hlpos 39411 . . . . . . . . . . . . . . 15 (𝐾 ∈ HL → 𝐾 ∈ Poset)
3314, 32syl 17 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Poset)
342, 19, 20hlatjcl 39412 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3514, 16, 17, 34syl3anc 1373 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑃 𝑄) ∈ (Base‘𝐾))
362, 18, 29pltletr 18247 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3733, 24, 27, 35, 36syl13anc 1374 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑃 𝑄)) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3831, 37mpand 695 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦(lt‘𝐾)(𝑃 𝑄)))
3918, 29pltle 18237 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4014, 15, 35, 39syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4138, 40syld 47 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑃 𝑄) → 𝑦 (𝑃 𝑄)))
4222, 41mtod 198 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑃 𝑄))
4342adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 (𝑃 𝑄))
44 simprr 772 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
4514hllatd 39409 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝐾 ∈ Lat)
46 simp23 1209 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅𝐴)
472, 20atbase 39334 . . . . . . . . . . . . . 14 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → 𝑅 ∈ (Base‘𝐾))
492, 18, 19latleeqj2 18358 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5045, 48, 35, 49syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5150adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
5244, 51mpbid 232 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) = (𝑃 𝑄))
5352breq2d 5103 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) ↔ 𝑋 (𝑃 𝑄)))
5443, 53mtbird 325 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
5554anassrs 467 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
56 simpl1l 1225 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
57 simpl3l 1229 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → 𝑦 ∈ (LPlanes‘𝐾))
58 simpl2 1193 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
59 simpr 484 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄)))
6018, 19, 20, 4lplni2 39582 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6156, 58, 59, 60syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾))
6229, 4lplnnlt 39610 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (LPlanes‘𝐾)) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
6356, 57, 61, 62syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅))
642, 19latjcl 18345 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
6545, 35, 48, 64syl3anc 1373 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
662, 18, 29pltletr 18247 . . . . . . . . . . . 12 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6733, 24, 27, 65, 66syl13anc 1374 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 ((𝑃 𝑄) 𝑅)) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6831, 67mpand 695 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
6968adantr 480 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → (𝑋 ((𝑃 𝑄) 𝑅) → 𝑦(lt‘𝐾)((𝑃 𝑄) 𝑅)))
7063, 69mtod 198 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄))) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7170anassrs 467 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
7255, 71pm2.61dan 812 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) ∧ 𝑃𝑄) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
73 eqid 2731 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
7473, 19, 20, 4lplnnle2at 39586 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑄𝐴𝑅𝐴)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
7514, 15, 17, 46, 74syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑦(le‘𝐾)(𝑄 𝑅))
762, 19, 20hlatjcl 39412 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
7714, 17, 46, 76syl3anc 1373 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑅) ∈ (Base‘𝐾))
782, 18, 29pltletr 18247 . . . . . . . . . . 11 ((𝐾 ∈ Poset ∧ (𝑦 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾))) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
7933, 24, 27, 77, 78syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑦(lt‘𝐾)𝑋𝑋 (𝑄 𝑅)) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8031, 79mpand 695 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(lt‘𝐾)(𝑄 𝑅)))
8173, 29pltle 18237 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑦 ∈ (LPlanes‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8214, 15, 77, 81syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑦(lt‘𝐾)(𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8380, 82syld 47 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 (𝑄 𝑅) → 𝑦(le‘𝐾)(𝑄 𝑅)))
8475, 83mtod 198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 (𝑄 𝑅))
8519, 20hlatjidm 39414 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
8614, 17, 85syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑄 𝑄) = 𝑄)
8786oveq1d 7361 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
8887breq2d 5103 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → (𝑋 ((𝑄 𝑄) 𝑅) ↔ 𝑋 (𝑄 𝑅)))
8984, 88mtbird 325 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑄 𝑄) 𝑅))
9013, 72, 89pm2.61ne 3013 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
91903expia 1121 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ((𝑦 ∈ (LPlanes‘𝐾) ∧ 𝑦( ⋖ ‘𝐾)𝑋) → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
9291expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑦 ∈ (LPlanes‘𝐾) → (𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅))))
9392rexlimdv 3131 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (∃𝑦 ∈ (LPlanes‘𝐾)𝑦( ⋖ ‘𝐾)𝑋 → ¬ 𝑋 ((𝑃 𝑄) 𝑅)))
949, 93mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝑉) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑋 ((𝑃 𝑄) 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  Posetcpo 18213  ltcplt 18214  joincjn 18217  Latclat 18337  ccvr 39307  Atomscatm 39308  HLchlt 39395  LPlanesclpl 39537  LVolsclvol 39538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545
This theorem is referenced by:  lvolnleat  39628  lvolnlelln  39629  lvolnlelpln  39630  3atnelvolN  39631  4atlem3  39641  dalem39  39756
  Copyright terms: Public domain W3C validator