| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version | ||
| Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolbase.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolbase | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4290 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑉 = ∅) | |
| 2 | lvolbase.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 3 | 2 | eqeq1i 2736 | . . . 4 ⊢ (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ¬ (LVols‘𝐾) = ∅) |
| 5 | fvprc 6814 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LVols‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝐾 ∈ V) |
| 7 | lvolbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2731 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2731 | . . . 4 ⊢ (LPlanes‘𝐾) = (LPlanes‘𝐾) | |
| 10 | 7, 8, 9, 2 | islvol 39611 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∅c0 4283 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 ⋖ ccvr 39300 LPlanesclpl 39530 LVolsclvol 39531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-lvols 39538 |
| This theorem is referenced by: islvol2 39618 lvolnle3at 39620 lvolneatN 39626 lvolnelln 39627 lvolnelpln 39628 lplncvrlvol2 39653 lvolcmp 39655 2lplnja 39657 |
| Copyright terms: Public domain | W3C validator |