![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version |
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolbase.b | β’ π΅ = (BaseβπΎ) |
lvolbase.v | β’ π = (LVolsβπΎ) |
Ref | Expression |
---|---|
lvolbase | β’ (π β π β π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4333 | . . . 4 β’ (π β π β Β¬ π = β ) | |
2 | lvolbase.v | . . . . 5 β’ π = (LVolsβπΎ) | |
3 | 2 | eqeq1i 2737 | . . . 4 β’ (π = β β (LVolsβπΎ) = β ) |
4 | 1, 3 | sylnib 327 | . . 3 β’ (π β π β Β¬ (LVolsβπΎ) = β ) |
5 | fvprc 6883 | . . 3 β’ (Β¬ πΎ β V β (LVolsβπΎ) = β ) | |
6 | 4, 5 | nsyl2 141 | . 2 β’ (π β π β πΎ β V) |
7 | lvolbase.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
8 | eqid 2732 | . . . 4 β’ ( β βπΎ) = ( β βπΎ) | |
9 | eqid 2732 | . . . 4 β’ (LPlanesβπΎ) = (LPlanesβπΎ) | |
10 | 7, 8, 9, 2 | islvol 38439 | . . 3 β’ (πΎ β V β (π β π β (π β π΅ β§ βπ₯ β (LPlanesβπΎ)π₯( β βπΎ)π))) |
11 | 10 | simprbda 499 | . 2 β’ ((πΎ β V β§ π β π) β π β π΅) |
12 | 6, 11 | mpancom 686 | 1 β’ (π β π β π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwrex 3070 Vcvv 3474 β c0 4322 class class class wbr 5148 βcfv 6543 Basecbs 17143 β ccvr 38127 LPlanesclpl 38358 LVolsclvol 38359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-lvols 38366 |
This theorem is referenced by: islvol2 38446 lvolnle3at 38448 lvolneatN 38454 lvolnelln 38455 lvolnelpln 38456 lplncvrlvol2 38481 lvolcmp 38483 2lplnja 38485 |
Copyright terms: Public domain | W3C validator |