Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolbase Structured version   Visualization version   GIF version

Theorem lvolbase 39572
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolbase.b 𝐵 = (Base‘𝐾)
lvolbase.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolbase (𝑋𝑉𝑋𝐵)

Proof of Theorem lvolbase
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0i 4303 . . . 4 (𝑋𝑉 → ¬ 𝑉 = ∅)
2 lvolbase.v . . . . 5 𝑉 = (LVols‘𝐾)
32eqeq1i 2734 . . . 4 (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅)
41, 3sylnib 328 . . 3 (𝑋𝑉 → ¬ (LVols‘𝐾) = ∅)
5 fvprc 6850 . . 3 𝐾 ∈ V → (LVols‘𝐾) = ∅)
64, 5nsyl2 141 . 2 (𝑋𝑉𝐾 ∈ V)
7 lvolbase.b . . . 4 𝐵 = (Base‘𝐾)
8 eqid 2729 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
9 eqid 2729 . . . 4 (LPlanes‘𝐾) = (LPlanes‘𝐾)
107, 8, 9, 2islvol 39567 . . 3 (𝐾 ∈ V → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋)))
1110simprbda 498 . 2 ((𝐾 ∈ V ∧ 𝑋𝑉) → 𝑋𝐵)
126, 11mpancom 688 1 (𝑋𝑉𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  Basecbs 17179  ccvr 39255  LPlanesclpl 39486  LVolsclvol 39487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-lvols 39494
This theorem is referenced by:  islvol2  39574  lvolnle3at  39576  lvolneatN  39582  lvolnelln  39583  lvolnelpln  39584  lplncvrlvol2  39609  lvolcmp  39611  2lplnja  39613
  Copyright terms: Public domain W3C validator