| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version | ||
| Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolbase.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolbase | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑉 = ∅) | |
| 2 | lvolbase.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 3 | 2 | eqeq1i 2738 | . . . 4 ⊢ (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ¬ (LVols‘𝐾) = ∅) |
| 5 | fvprc 6820 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LVols‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝐾 ∈ V) |
| 7 | lvolbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2733 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2733 | . . . 4 ⊢ (LPlanes‘𝐾) = (LPlanes‘𝐾) | |
| 10 | 7, 8, 9, 2 | islvol 39692 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 Vcvv 3437 ∅c0 4282 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 ⋖ ccvr 39381 LPlanesclpl 39611 LVolsclvol 39612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-lvols 39619 |
| This theorem is referenced by: islvol2 39699 lvolnle3at 39701 lvolneatN 39707 lvolnelln 39708 lvolnelpln 39709 lplncvrlvol2 39734 lvolcmp 39736 2lplnja 39738 |
| Copyright terms: Public domain | W3C validator |