Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolbase Structured version   Visualization version   GIF version

Theorem lvolbase 38444
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolbase.b 𝐡 = (Baseβ€˜πΎ)
lvolbase.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
lvolbase (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ 𝐡)

Proof of Theorem lvolbase
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 n0i 4333 . . . 4 (𝑋 ∈ 𝑉 β†’ Β¬ 𝑉 = βˆ…)
2 lvolbase.v . . . . 5 𝑉 = (LVolsβ€˜πΎ)
32eqeq1i 2737 . . . 4 (𝑉 = βˆ… ↔ (LVolsβ€˜πΎ) = βˆ…)
41, 3sylnib 327 . . 3 (𝑋 ∈ 𝑉 β†’ Β¬ (LVolsβ€˜πΎ) = βˆ…)
5 fvprc 6883 . . 3 (Β¬ 𝐾 ∈ V β†’ (LVolsβ€˜πΎ) = βˆ…)
64, 5nsyl2 141 . 2 (𝑋 ∈ 𝑉 β†’ 𝐾 ∈ V)
7 lvolbase.b . . . 4 𝐡 = (Baseβ€˜πΎ)
8 eqid 2732 . . . 4 ( β‹– β€˜πΎ) = ( β‹– β€˜πΎ)
9 eqid 2732 . . . 4 (LPlanesβ€˜πΎ) = (LPlanesβ€˜πΎ)
107, 8, 9, 2islvol 38439 . . 3 (𝐾 ∈ V β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘₯ ∈ (LPlanesβ€˜πΎ)π‘₯( β‹– β€˜πΎ)𝑋)))
1110simprbda 499 . 2 ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) β†’ 𝑋 ∈ 𝐡)
126, 11mpancom 686 1 (𝑋 ∈ 𝑉 β†’ 𝑋 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474  βˆ…c0 4322   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143   β‹– ccvr 38127  LPlanesclpl 38358  LVolsclvol 38359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-lvols 38366
This theorem is referenced by:  islvol2  38446  lvolnle3at  38448  lvolneatN  38454  lvolnelln  38455  lvolnelpln  38456  lplncvrlvol2  38481  lvolcmp  38483  2lplnja  38485
  Copyright terms: Public domain W3C validator