| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version | ||
| Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolbase.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolbase.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolbase | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4293 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑉 = ∅) | |
| 2 | lvolbase.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 3 | 2 | eqeq1i 2734 | . . . 4 ⊢ (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅) |
| 4 | 1, 3 | sylnib 328 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ¬ (LVols‘𝐾) = ∅) |
| 5 | fvprc 6818 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LVols‘𝐾) = ∅) | |
| 6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝐾 ∈ V) |
| 7 | lvolbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | eqid 2729 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | eqid 2729 | . . . 4 ⊢ (LPlanes‘𝐾) = (LPlanes‘𝐾) | |
| 10 | 7, 8, 9, 2 | islvol 39552 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
| 11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
| 12 | 6, 11 | mpancom 688 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3438 ∅c0 4286 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 ⋖ ccvr 39240 LPlanesclpl 39471 LVolsclvol 39472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-lvols 39479 |
| This theorem is referenced by: islvol2 39559 lvolnle3at 39561 lvolneatN 39567 lvolnelln 39568 lvolnelpln 39569 lplncvrlvol2 39594 lvolcmp 39596 2lplnja 39598 |
| Copyright terms: Public domain | W3C validator |