Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolbase | Structured version Visualization version GIF version |
Description: A 3-dim lattice volume is a lattice element. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolbase.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolbase.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvolbase | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4264 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ¬ 𝑉 = ∅) | |
2 | lvolbase.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
3 | 2 | eqeq1i 2743 | . . . 4 ⊢ (𝑉 = ∅ ↔ (LVols‘𝐾) = ∅) |
4 | 1, 3 | sylnib 327 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ¬ (LVols‘𝐾) = ∅) |
5 | fvprc 6748 | . . 3 ⊢ (¬ 𝐾 ∈ V → (LVols‘𝐾) = ∅) | |
6 | 4, 5 | nsyl2 141 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝐾 ∈ V) |
7 | lvolbase.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
8 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | eqid 2738 | . . . 4 ⊢ (LPlanes‘𝐾) = (LPlanes‘𝐾) | |
10 | 7, 8, 9, 2 | islvol 37514 | . . 3 ⊢ (𝐾 ∈ V → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑥 ∈ (LPlanes‘𝐾)𝑥( ⋖ ‘𝐾)𝑋))) |
11 | 10 | simprbda 498 | . 2 ⊢ ((𝐾 ∈ V ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝐵) |
12 | 6, 11 | mpancom 684 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 ⋖ ccvr 37203 LPlanesclpl 37433 LVolsclvol 37434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lvols 37441 |
This theorem is referenced by: islvol2 37521 lvolnle3at 37523 lvolneatN 37529 lvolnelln 37530 lvolnelpln 37531 lplncvrlvol2 37556 lvolcmp 37558 2lplnja 37560 |
Copyright terms: Public domain | W3C validator |