Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvoli Structured version   Visualization version   GIF version

Theorem lvoli 39562
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvoli (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)

Proof of Theorem lvoli
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl2 1193 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝐵)
2 breq1 5105 . . . 4 (𝑥 = 𝑋 → (𝑥𝐶𝑌𝑋𝐶𝑌))
32rspcev 3585 . . 3 ((𝑋𝑃𝑋𝐶𝑌) → ∃𝑥𝑃 𝑥𝐶𝑌)
433ad2antl3 1188 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → ∃𝑥𝑃 𝑥𝐶𝑌)
5 simpl1 1192 . . 3 (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝐾𝐷)
6 lvolset.b . . . 4 𝐵 = (Base‘𝐾)
7 lvolset.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
8 lvolset.p . . . 4 𝑃 = (LPlanes‘𝐾)
9 lvolset.v . . . 4 𝑉 = (LVols‘𝐾)
106, 7, 8, 9islvol 39560 . . 3 (𝐾𝐷 → (𝑌𝑉 ↔ (𝑌𝐵 ∧ ∃𝑥𝑃 𝑥𝐶𝑌)))
115, 10syl 17 . 2 (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → (𝑌𝑉 ↔ (𝑌𝐵 ∧ ∃𝑥𝑃 𝑥𝐶𝑌)))
121, 4, 11mpbir2and 713 1 (((𝐾𝐷𝑌𝐵𝑋𝑃) ∧ 𝑋𝐶𝑌) → 𝑌𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  Basecbs 17155  ccvr 39248  LPlanesclpl 39479  LVolsclvol 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-lvols 39487
This theorem is referenced by:  lplncvrlvol  39603
  Copyright terms: Public domain W3C validator