![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli | Structured version Visualization version GIF version |
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvoli | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
2 | breq1 5152 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝑌 ↔ 𝑋𝐶𝑌)) | |
3 | 2 | rspcev 3622 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
4 | 3 | 3ad2antl3 1185 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
5 | simpl1 1189 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ 𝐷) | |
6 | lvolset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | lvolset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | lvolset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
9 | lvolset.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
10 | 6, 7, 8, 9 | islvol 39517 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
12 | 1, 4, 11 | mpbir2and 712 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 ∃wrex 3066 class class class wbr 5149 ‘cfv 6558 Basecbs 17234 ⋖ ccvr 39205 LPlanesclpl 39436 LVolsclvol 39437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5430 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-iota 6510 df-fun 6560 df-fv 6566 df-lvols 39444 |
This theorem is referenced by: lplncvrlvol 39560 |
Copyright terms: Public domain | W3C validator |