| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli | Structured version Visualization version GIF version | ||
| Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvoli | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
| 2 | breq1 5112 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝑌 ↔ 𝑋𝐶𝑌)) | |
| 3 | 2 | rspcev 3591 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
| 4 | 3 | 3ad2antl3 1188 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
| 5 | simpl1 1192 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ 𝐷) | |
| 6 | lvolset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 7 | lvolset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 8 | lvolset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 9 | lvolset.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 10 | 6, 7, 8, 9 | islvol 39562 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
| 11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
| 12 | 1, 4, 11 | mpbir2and 713 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 ⋖ ccvr 39250 LPlanesclpl 39481 LVolsclvol 39482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-lvols 39489 |
| This theorem is referenced by: lplncvrlvol 39605 |
| Copyright terms: Public domain | W3C validator |