![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli | Structured version Visualization version GIF version |
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
lvoli | ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1192 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝐵) | |
2 | breq1 5169 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝑌 ↔ 𝑋𝐶𝑌)) | |
3 | 2 | rspcev 3635 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
4 | 3 | 3ad2antl3 1187 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌) |
5 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝐾 ∈ 𝐷) | |
6 | lvolset.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | lvolset.c | . . . 4 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
8 | lvolset.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
9 | lvolset.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
10 | 6, 7, 8, 9 | islvol 39522 | . . 3 ⊢ (𝐾 ∈ 𝐷 → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
11 | 5, 10 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → (𝑌 ∈ 𝑉 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑃 𝑥𝐶𝑌))) |
12 | 1, 4, 11 | mpbir2and 712 | 1 ⊢ (((𝐾 ∈ 𝐷 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ∧ 𝑋𝐶𝑌) → 𝑌 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ‘cfv 6568 Basecbs 17252 ⋖ ccvr 39210 LPlanesclpl 39441 LVolsclvol 39442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-iota 6520 df-fun 6570 df-fv 6576 df-lvols 39449 |
This theorem is referenced by: lplncvrlvol 39565 |
Copyright terms: Public domain | W3C validator |