![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvoli | Structured version Visualization version GIF version |
Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | β’ π΅ = (BaseβπΎ) |
lvolset.c | β’ πΆ = ( β βπΎ) |
lvolset.p | β’ π = (LPlanesβπΎ) |
lvolset.v | β’ π = (LVolsβπΎ) |
Ref | Expression |
---|---|
lvoli | β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π΅) | |
2 | breq1 5151 | . . . 4 β’ (π₯ = π β (π₯πΆπ β ππΆπ)) | |
3 | 2 | rspcev 3612 | . . 3 β’ ((π β π β§ ππΆπ) β βπ₯ β π π₯πΆπ) |
4 | 3 | 3ad2antl3 1186 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β βπ₯ β π π₯πΆπ) |
5 | simpl1 1190 | . . 3 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β πΎ β π·) | |
6 | lvolset.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
7 | lvolset.c | . . . 4 β’ πΆ = ( β βπΎ) | |
8 | lvolset.p | . . . 4 β’ π = (LPlanesβπΎ) | |
9 | lvolset.v | . . . 4 β’ π = (LVolsβπΎ) | |
10 | 6, 7, 8, 9 | islvol 38760 | . . 3 β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ₯ β π π₯πΆπ))) |
11 | 5, 10 | syl 17 | . 2 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β (π β π β (π β π΅ β§ βπ₯ β π π₯πΆπ))) |
12 | 1, 4, 11 | mpbir2and 710 | 1 β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 βwrex 3069 class class class wbr 5148 βcfv 6543 Basecbs 17151 β ccvr 38448 LPlanesclpl 38679 LVolsclvol 38680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-lvols 38687 |
This theorem is referenced by: lplncvrlvol 38803 |
Copyright terms: Public domain | W3C validator |