Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol4 Structured version   Visualization version   GIF version

Theorem islvol4 38957
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐡 = (Baseβ€˜πΎ)
lvolset.c 𝐢 = ( β‹– β€˜πΎ)
lvolset.p 𝑃 = (LPlanesβ€˜πΎ)
lvolset.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
islvol4 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐡(𝑦)   𝐢(𝑦)   𝑉(𝑦)

Proof of Theorem islvol4
StepHypRef Expression
1 lvolset.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 lvolset.c . . 3 𝐢 = ( β‹– β€˜πΎ)
3 lvolset.p . . 3 𝑃 = (LPlanesβ€˜πΎ)
4 lvolset.v . . 3 𝑉 = (LVolsβ€˜πΎ)
51, 2, 3, 4islvol 38956 . 2 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋)))
65baibd 539 1 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   class class class wbr 5141  β€˜cfv 6536  Basecbs 17150   β‹– ccvr 38644  LPlanesclpl 38875  LVolsclvol 38876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-lvols 38883
This theorem is referenced by:  islvol3  38959  lvolcmp  39000
  Copyright terms: Public domain W3C validator