| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol4 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| islvol4 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvolset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lvolset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | lvolset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 4 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
| 5 | 1, 2, 3, 4 | islvol 39513 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋))) |
| 6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5116 ‘cfv 6527 Basecbs 17213 ⋖ ccvr 39201 LPlanesclpl 39432 LVolsclvol 39433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-lvols 39440 |
| This theorem is referenced by: islvol3 39516 lvolcmp 39557 |
| Copyright terms: Public domain | W3C validator |