Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol4 Structured version   Visualization version   GIF version

Theorem islvol4 39273
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol4 ((𝐾𝐴𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑉(𝑦)

Proof of Theorem islvol4
StepHypRef Expression
1 lvolset.b . . 3 𝐵 = (Base‘𝐾)
2 lvolset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 lvolset.p . . 3 𝑃 = (LPlanes‘𝐾)
4 lvolset.v . . 3 𝑉 = (LVols‘𝐾)
51, 2, 3, 4islvol 39272 . 2 (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
65baibd 538 1 ((𝐾𝐴𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5153  cfv 6554  Basecbs 17213  ccvr 38960  LPlanesclpl 39191  LVolsclvol 39192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6506  df-fun 6556  df-fv 6562  df-lvols 39199
This theorem is referenced by:  islvol3  39275  lvolcmp  39316
  Copyright terms: Public domain W3C validator