![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol4 | Structured version Visualization version GIF version |
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
lvolset.b | β’ π΅ = (BaseβπΎ) |
lvolset.c | β’ πΆ = ( β βπΎ) |
lvolset.p | β’ π = (LPlanesβπΎ) |
lvolset.v | β’ π = (LVolsβπΎ) |
Ref | Expression |
---|---|
islvol4 | β’ ((πΎ β π΄ β§ π β π΅) β (π β π β βπ¦ β π π¦πΆπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvolset.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | lvolset.c | . . 3 β’ πΆ = ( β βπΎ) | |
3 | lvolset.p | . . 3 β’ π = (LPlanesβπΎ) | |
4 | lvolset.v | . . 3 β’ π = (LVolsβπΎ) | |
5 | 1, 2, 3, 4 | islvol 38439 | . 2 β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) |
6 | 5 | baibd 540 | 1 β’ ((πΎ β π΄ β§ π β π΅) β (π β π β βπ¦ β π π¦πΆπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 class class class wbr 5148 βcfv 6543 Basecbs 17143 β ccvr 38127 LPlanesclpl 38358 LVolsclvol 38359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-lvols 38366 |
This theorem is referenced by: islvol3 38442 lvolcmp 38483 |
Copyright terms: Public domain | W3C validator |