Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol4 Structured version   Visualization version   GIF version

Theorem islvol4 39514
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐵 = (Base‘𝐾)
lvolset.c 𝐶 = ( ⋖ ‘𝐾)
lvolset.p 𝑃 = (LPlanes‘𝐾)
lvolset.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol4 ((𝐾𝐴𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝐶(𝑦)   𝑉(𝑦)

Proof of Theorem islvol4
StepHypRef Expression
1 lvolset.b . . 3 𝐵 = (Base‘𝐾)
2 lvolset.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 lvolset.p . . 3 𝑃 = (LPlanes‘𝐾)
4 lvolset.v . . 3 𝑉 = (LVols‘𝐾)
51, 2, 3, 4islvol 39513 . 2 (𝐾𝐴 → (𝑋𝑉 ↔ (𝑋𝐵 ∧ ∃𝑦𝑃 𝑦𝐶𝑋)))
65baibd 539 1 ((𝐾𝐴𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦𝐶𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5116  cfv 6527  Basecbs 17213  ccvr 39201  LPlanesclpl 39432  LVolsclvol 39433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-lvols 39440
This theorem is referenced by:  islvol3  39516  lvolcmp  39557
  Copyright terms: Public domain W3C validator