Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol4 Structured version   Visualization version   GIF version

Theorem islvol4 38440
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
lvolset.b 𝐡 = (Baseβ€˜πΎ)
lvolset.c 𝐢 = ( β‹– β€˜πΎ)
lvolset.p 𝑃 = (LPlanesβ€˜πΎ)
lvolset.v 𝑉 = (LVolsβ€˜πΎ)
Assertion
Ref Expression
islvol4 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
Distinct variable groups:   𝑦,𝑃   𝑦,𝐾   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐡(𝑦)   𝐢(𝑦)   𝑉(𝑦)

Proof of Theorem islvol4
StepHypRef Expression
1 lvolset.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 lvolset.c . . 3 𝐢 = ( β‹– β€˜πΎ)
3 lvolset.p . . 3 𝑃 = (LPlanesβ€˜πΎ)
4 lvolset.v . . 3 𝑉 = (LVolsβ€˜πΎ)
51, 2, 3, 4islvol 38439 . 2 (𝐾 ∈ 𝐴 β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐡 ∧ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋)))
65baibd 540 1 ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 ∈ 𝑉 ↔ βˆƒπ‘¦ ∈ 𝑃 𝑦𝐢𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070   class class class wbr 5148  β€˜cfv 6543  Basecbs 17143   β‹– ccvr 38127  LPlanesclpl 38358  LVolsclvol 38359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-lvols 38366
This theorem is referenced by:  islvol3  38442  lvolcmp  38483
  Copyright terms: Public domain W3C validator