| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol4 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| islvol4 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvolset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lvolset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | lvolset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 4 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
| 5 | 1, 2, 3, 4 | islvol 39745 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋))) |
| 6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 ‘cfv 6489 Basecbs 17127 ⋖ ccvr 39434 LPlanesclpl 39664 LVolsclvol 39665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-lvols 39672 |
| This theorem is referenced by: islvol3 39748 lvolcmp 39789 |
| Copyright terms: Public domain | W3C validator |