| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol4 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolset.b | ⊢ 𝐵 = (Base‘𝐾) |
| lvolset.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
| lvolset.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolset.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| islvol4 | ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvolset.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | lvolset.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
| 3 | lvolset.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 4 | lvolset.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
| 5 | 1, 2, 3, 4 | islvol 39562 | . 2 ⊢ (𝐾 ∈ 𝐴 → (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋))) |
| 6 | 5 | baibd 539 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦𝐶𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5109 ‘cfv 6513 Basecbs 17185 ⋖ ccvr 39250 LPlanesclpl 39481 LVolsclvol 39482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-lvols 39489 |
| This theorem is referenced by: islvol3 39565 lvolcmp 39606 |
| Copyright terms: Public domain | W3C validator |