Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol3 Structured version   Visualization version   GIF version

Theorem islvol3 35651
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
islvol3.b 𝐵 = (Base‘𝐾)
islvol3.l = (le‘𝐾)
islvol3.j = (join‘𝐾)
islvol3.a 𝐴 = (Atoms‘𝐾)
islvol3.p 𝑃 = (LPlanes‘𝐾)
islvol3.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
Distinct variable groups:   𝐴,𝑝   𝑦,𝑝,𝐵   𝐾,𝑝,𝑦   ,𝑝   𝑃,𝑝,𝑦   𝑋,𝑝,𝑦
Allowed substitution hints:   𝐴(𝑦)   (𝑦,𝑝)   (𝑦)   𝑉(𝑦,𝑝)

Proof of Theorem islvol3
StepHypRef Expression
1 islvol3.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2825 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 islvol3.p . . 3 𝑃 = (LPlanes‘𝐾)
4 islvol3.v . . 3 𝑉 = (LVols‘𝐾)
51, 2, 3, 4islvol4 35649 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦( ⋖ ‘𝐾)𝑋))
6 simpll 785 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝐾 ∈ HL)
71, 3lplnbase 35609 . . . . . 6 (𝑦𝑃𝑦𝐵)
87adantl 475 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝑦𝐵)
9 simplr 787 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝑋𝐵)
10 islvol3.l . . . . . 6 = (le‘𝐾)
11 islvol3.j . . . . . 6 = (join‘𝐾)
12 islvol3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
131, 10, 11, 2, 12cvrval3 35488 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵𝑋𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋)))
146, 8, 9, 13syl3anc 1496 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋)))
15 eqcom 2832 . . . . . . 7 ((𝑦 𝑝) = 𝑋𝑋 = (𝑦 𝑝))
1615a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) ∧ 𝑝𝐴) → ((𝑦 𝑝) = 𝑋𝑋 = (𝑦 𝑝)))
1716anbi2d 624 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑦𝑋 = (𝑦 𝑝))))
1817rexbidva 3259 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
1914, 18bitrd 271 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
2019rexbidva 3259 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑃 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
215, 20bitrd 271 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  Basecbs 16222  lecple 16312  joincjn 17297  ccvr 35337  Atomscatm 35338  HLchlt 35425  LPlanesclpl 35567  LVolsclvol 35568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-lplanes 35574  df-lvols 35575
This theorem is referenced by:  lvoli3  35652  islvol5  35654
  Copyright terms: Public domain W3C validator