Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islvol3 | Structured version Visualization version GIF version |
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.) |
Ref | Expression |
---|---|
islvol3.b | ⊢ 𝐵 = (Base‘𝐾) |
islvol3.l | ⊢ ≤ = (le‘𝐾) |
islvol3.j | ⊢ ∨ = (join‘𝐾) |
islvol3.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islvol3.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
islvol3.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
islvol3 | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvol3.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
3 | islvol3.p | . . 3 ⊢ 𝑃 = (LPlanes‘𝐾) | |
4 | islvol3.v | . . 3 ⊢ 𝑉 = (LVols‘𝐾) | |
5 | 1, 2, 3, 4 | islvol4 37584 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 𝑦( ⋖ ‘𝐾)𝑋)) |
6 | simpll 764 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → 𝐾 ∈ HL) | |
7 | 1, 3 | lplnbase 37544 | . . . . . 6 ⊢ (𝑦 ∈ 𝑃 → 𝑦 ∈ 𝐵) |
8 | 7 | adantl 482 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → 𝑦 ∈ 𝐵) |
9 | simplr 766 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → 𝑋 ∈ 𝐵) | |
10 | islvol3.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
11 | islvol3.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
12 | islvol3.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
13 | 1, 10, 11, 2, 12 | cvrval3 37423 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
14 | 6, 8, 9, 13 | syl3anc 1370 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋))) |
15 | eqcom 2747 | . . . . . . 7 ⊢ ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝)) | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) ∧ 𝑝 ∈ 𝐴) → ((𝑦 ∨ 𝑝) = 𝑋 ↔ 𝑋 = (𝑦 ∨ 𝑝))) |
17 | 16 | anbi2d 629 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) ∧ 𝑝 ∈ 𝐴) → ((¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
18 | 17 | rexbidva 3227 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ (𝑦 ∨ 𝑝) = 𝑋) ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
19 | 14, 18 | bitrd 278 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) ∧ 𝑦 ∈ 𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
20 | 19 | rexbidva 3227 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (∃𝑦 ∈ 𝑃 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦 ∈ 𝑃 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
21 | 5, 20 | bitrd 278 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑉 ↔ ∃𝑦 ∈ 𝑃 ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑦 ∧ 𝑋 = (𝑦 ∨ 𝑝)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 lecple 16967 joincjn 18027 ⋖ ccvr 37272 Atomscatm 37273 HLchlt 37360 LPlanesclpl 37502 LVolsclvol 37503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-proset 18011 df-poset 18029 df-plt 18046 df-lub 18062 df-glb 18063 df-join 18064 df-meet 18065 df-p0 18141 df-lat 18148 df-clat 18215 df-oposet 37186 df-ol 37188 df-oml 37189 df-covers 37276 df-ats 37277 df-atl 37308 df-cvlat 37332 df-hlat 37361 df-lplanes 37509 df-lvols 37510 |
This theorem is referenced by: lvoli3 37587 islvol5 37589 |
Copyright terms: Public domain | W3C validator |