Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol3 Structured version   Visualization version   GIF version

Theorem islvol3 39748
Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012.)
Hypotheses
Ref Expression
islvol3.b 𝐵 = (Base‘𝐾)
islvol3.l = (le‘𝐾)
islvol3.j = (join‘𝐾)
islvol3.a 𝐴 = (Atoms‘𝐾)
islvol3.p 𝑃 = (LPlanes‘𝐾)
islvol3.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
Distinct variable groups:   𝐴,𝑝   𝑦,𝑝,𝐵   𝐾,𝑝,𝑦   ,𝑝   𝑃,𝑝,𝑦   𝑋,𝑝,𝑦
Allowed substitution hints:   𝐴(𝑦)   (𝑦,𝑝)   (𝑦)   𝑉(𝑦,𝑝)

Proof of Theorem islvol3
StepHypRef Expression
1 islvol3.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2733 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
3 islvol3.p . . 3 𝑃 = (LPlanes‘𝐾)
4 islvol3.v . . 3 𝑉 = (LVols‘𝐾)
51, 2, 3, 4islvol4 39746 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃 𝑦( ⋖ ‘𝐾)𝑋))
6 simpll 766 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝐾 ∈ HL)
71, 3lplnbase 39706 . . . . . 6 (𝑦𝑃𝑦𝐵)
87adantl 481 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝑦𝐵)
9 simplr 768 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → 𝑋𝐵)
10 islvol3.l . . . . . 6 = (le‘𝐾)
11 islvol3.j . . . . . 6 = (join‘𝐾)
12 islvol3.a . . . . . 6 𝐴 = (Atoms‘𝐾)
131, 10, 11, 2, 12cvrval3 39585 . . . . 5 ((𝐾 ∈ HL ∧ 𝑦𝐵𝑋𝐵) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋)))
146, 8, 9, 13syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋)))
15 eqcom 2740 . . . . . . 7 ((𝑦 𝑝) = 𝑋𝑋 = (𝑦 𝑝))
1615a1i 11 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) ∧ 𝑝𝐴) → ((𝑦 𝑝) = 𝑋𝑋 = (𝑦 𝑝)))
1716anbi2d 630 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑦𝑋 = (𝑦 𝑝))))
1817rexbidva 3155 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (∃𝑝𝐴𝑝 𝑦 ∧ (𝑦 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
1914, 18bitrd 279 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ 𝑦𝑃) → (𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
2019rexbidva 3155 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (∃𝑦𝑃 𝑦( ⋖ ‘𝐾)𝑋 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
215, 20bitrd 279 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝑉 ↔ ∃𝑦𝑃𝑝𝐴𝑝 𝑦𝑋 = (𝑦 𝑝))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  ccvr 39434  Atomscatm 39435  HLchlt 39522  LPlanesclpl 39664  LVolsclvol 39665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-lplanes 39671  df-lvols 39672
This theorem is referenced by:  lvoli3  39749  islvol5  39751
  Copyright terms: Public domain W3C validator