HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Visualization version   GIF version

Theorem hhph 31197
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhph 𝑈 ∈ CPreHilOLD

Proof of Theorem hhph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
21hhnv 31184 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3 normpar 31174 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
4 hvsubval 31035 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
54fveq2d 6910 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) = (norm‘(𝑥 + (-1 · 𝑦))))
65oveq1d 7446 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) = ((norm‘(𝑥 + (-1 · 𝑦)))↑2))
76oveq2d 7447 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)))
8 hvaddcl 31031 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
9 normcl 31144 . . . . . . . . 9 ((𝑥 + 𝑦) ∈ ℋ → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
108, 9syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
1110recnd 11289 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℂ)
1211sqcld 14184 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 + 𝑦))↑2) ∈ ℂ)
13 hvsubcl 31036 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
14 normcl 31144 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℝ)
1514recnd 11289 . . . . . . . 8 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℂ)
1613, 15syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) ∈ ℂ)
1716sqcld 14184 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) ∈ ℂ)
1812, 17addcomd 11463 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
197, 18eqtr3d 2779 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
20 normcl 31144 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120recnd 11289 . . . . . 6 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
2221sqcld 14184 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥)↑2) ∈ ℂ)
23 normcl 31144 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2423recnd 11289 . . . . . 6 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
2524sqcld 14184 . . . . 5 (𝑦 ∈ ℋ → ((norm𝑦)↑2) ∈ ℂ)
26 2cn 12341 . . . . . 6 2 ∈ ℂ
27 adddi 11244 . . . . . 6 ((2 ∈ ℂ ∧ ((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2826, 27mp3an1 1450 . . . . 5 ((((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2922, 25, 28syl2an 596 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
303, 19, 293eqtr4d 2787 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))
3130rgen2 3199 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))
32 hilablo 31179 . . . 4 + ∈ AbelOp
3332elexi 3503 . . 3 + ∈ V
34 hvmulex 31030 . . 3 · ∈ V
35 normf 31142 . . . 4 norm: ℋ⟶ℝ
36 ax-hilex 31018 . . . 4 ℋ ∈ V
37 fex 7246 . . . 4 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
3835, 36, 37mp2an 692 . . 3 norm ∈ V
39 hhnv.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
4039eleq1i 2832 . . . 4 (𝑈 ∈ CPreHilOLD ↔ ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
41 ablogrpo 30566 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4232, 41ax-mp 5 . . . . . 6 + ∈ GrpOp
43 ax-hfvadd 31019 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
4443fdmi 6747 . . . . . 6 dom + = ( ℋ × ℋ)
4542, 44grporn 30540 . . . . 5 ℋ = ran +
4645isphg 30836 . . . 4 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4740, 46bitrid 283 . . 3 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4833, 34, 38, 47mp3an 1463 . 2 (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))))
492, 31, 48mpbir2an 711 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  cop 4632   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160  -cneg 11493  2c2 12321  cexp 14102  GrpOpcgr 30508  AbelOpcablo 30563  NrmCVeccnv 30603  CPreHilOLDccphlo 30831  chba 30938   + cva 30939   · csm 30940  normcno 30942   cmv 30944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-hilex 31018  ax-hfvadd 31019  ax-hvcom 31020  ax-hvass 31021  ax-hv0cl 31022  ax-hvaddid 31023  ax-hfvmul 31024  ax-hvmulid 31025  ax-hvmulass 31026  ax-hvdistr1 31027  ax-hvdistr2 31028  ax-hvmul0 31029  ax-hfi 31098  ax-his1 31101  ax-his2 31102  ax-his3 31103  ax-his4 31104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ablo 30564  df-vc 30578  df-nv 30611  df-ph 30832  df-hnorm 30987  df-hvsub 30990
This theorem is referenced by:  bcsiHIL  31199  hhhl  31223  pjhthlem2  31411
  Copyright terms: Public domain W3C validator