HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Visualization version   GIF version

Theorem hhph 30975
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhph 𝑈 ∈ CPreHilOLD

Proof of Theorem hhph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2727 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
21hhnv 30962 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3 normpar 30952 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
4 hvsubval 30813 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
54fveq2d 6895 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) = (norm‘(𝑥 + (-1 · 𝑦))))
65oveq1d 7429 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) = ((norm‘(𝑥 + (-1 · 𝑦)))↑2))
76oveq2d 7430 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)))
8 hvaddcl 30809 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
9 normcl 30922 . . . . . . . . 9 ((𝑥 + 𝑦) ∈ ℋ → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
108, 9syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
1110recnd 11264 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℂ)
1211sqcld 14132 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 + 𝑦))↑2) ∈ ℂ)
13 hvsubcl 30814 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
14 normcl 30922 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℝ)
1514recnd 11264 . . . . . . . 8 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℂ)
1613, 15syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) ∈ ℂ)
1716sqcld 14132 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) ∈ ℂ)
1812, 17addcomd 11438 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
197, 18eqtr3d 2769 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
20 normcl 30922 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120recnd 11264 . . . . . 6 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
2221sqcld 14132 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥)↑2) ∈ ℂ)
23 normcl 30922 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2423recnd 11264 . . . . . 6 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
2524sqcld 14132 . . . . 5 (𝑦 ∈ ℋ → ((norm𝑦)↑2) ∈ ℂ)
26 2cn 12309 . . . . . 6 2 ∈ ℂ
27 adddi 11219 . . . . . 6 ((2 ∈ ℂ ∧ ((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2826, 27mp3an1 1445 . . . . 5 ((((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2922, 25, 28syl2an 595 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
303, 19, 293eqtr4d 2777 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))
3130rgen2 3192 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))
32 hilablo 30957 . . . 4 + ∈ AbelOp
3332elexi 3489 . . 3 + ∈ V
34 hvmulex 30808 . . 3 · ∈ V
35 normf 30920 . . . 4 norm: ℋ⟶ℝ
36 ax-hilex 30796 . . . 4 ℋ ∈ V
37 fex 7232 . . . 4 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
3835, 36, 37mp2an 691 . . 3 norm ∈ V
39 hhnv.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
4039eleq1i 2819 . . . 4 (𝑈 ∈ CPreHilOLD ↔ ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
41 ablogrpo 30344 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4232, 41ax-mp 5 . . . . . 6 + ∈ GrpOp
43 ax-hfvadd 30797 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
4443fdmi 6728 . . . . . 6 dom + = ( ℋ × ℋ)
4542, 44grporn 30318 . . . . 5 ℋ = ran +
4645isphg 30614 . . . 4 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4740, 46bitrid 283 . . 3 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4833, 34, 38, 47mp3an 1458 . 2 (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))))
492, 31, 48mpbir2an 710 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  Vcvv 3469  cop 4630   × cxp 5670  wf 6538  cfv 6542  (class class class)co 7414  cc 11128  cr 11129  1c1 11131   + caddc 11133   · cmul 11135  -cneg 11467  2c2 12289  cexp 14050  GrpOpcgr 30286  AbelOpcablo 30341  NrmCVeccnv 30381  CPreHilOLDccphlo 30609  chba 30716   + cva 30717   · csm 30718  normcno 30720   cmv 30722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-hilex 30796  ax-hfvadd 30797  ax-hvcom 30798  ax-hvass 30799  ax-hv0cl 30800  ax-hvaddid 30801  ax-hfvmul 30802  ax-hvmulid 30803  ax-hvmulass 30804  ax-hvdistr1 30805  ax-hvdistr2 30806  ax-hvmul0 30807  ax-hfi 30876  ax-his1 30879  ax-his2 30880  ax-his3 30881  ax-his4 30882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-grpo 30290  df-gid 30291  df-ablo 30342  df-vc 30356  df-nv 30389  df-ph 30610  df-hnorm 30765  df-hvsub 30768
This theorem is referenced by:  bcsiHIL  30977  hhhl  31001  pjhthlem2  31189
  Copyright terms: Public domain W3C validator