HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Visualization version   GIF version

Theorem hhph 31207
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhph 𝑈 ∈ CPreHilOLD

Proof of Theorem hhph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
21hhnv 31194 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3 normpar 31184 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
4 hvsubval 31045 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
54fveq2d 6911 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) = (norm‘(𝑥 + (-1 · 𝑦))))
65oveq1d 7446 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) = ((norm‘(𝑥 + (-1 · 𝑦)))↑2))
76oveq2d 7447 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)))
8 hvaddcl 31041 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
9 normcl 31154 . . . . . . . . 9 ((𝑥 + 𝑦) ∈ ℋ → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
108, 9syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
1110recnd 11287 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℂ)
1211sqcld 14181 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 + 𝑦))↑2) ∈ ℂ)
13 hvsubcl 31046 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
14 normcl 31154 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℝ)
1514recnd 11287 . . . . . . . 8 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℂ)
1613, 15syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) ∈ ℂ)
1716sqcld 14181 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) ∈ ℂ)
1812, 17addcomd 11461 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
197, 18eqtr3d 2777 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
20 normcl 31154 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120recnd 11287 . . . . . 6 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
2221sqcld 14181 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥)↑2) ∈ ℂ)
23 normcl 31154 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2423recnd 11287 . . . . . 6 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
2524sqcld 14181 . . . . 5 (𝑦 ∈ ℋ → ((norm𝑦)↑2) ∈ ℂ)
26 2cn 12339 . . . . . 6 2 ∈ ℂ
27 adddi 11242 . . . . . 6 ((2 ∈ ℂ ∧ ((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2826, 27mp3an1 1447 . . . . 5 ((((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2922, 25, 28syl2an 596 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
303, 19, 293eqtr4d 2785 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))
3130rgen2 3197 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))
32 hilablo 31189 . . . 4 + ∈ AbelOp
3332elexi 3501 . . 3 + ∈ V
34 hvmulex 31040 . . 3 · ∈ V
35 normf 31152 . . . 4 norm: ℋ⟶ℝ
36 ax-hilex 31028 . . . 4 ℋ ∈ V
37 fex 7246 . . . 4 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
3835, 36, 37mp2an 692 . . 3 norm ∈ V
39 hhnv.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
4039eleq1i 2830 . . . 4 (𝑈 ∈ CPreHilOLD ↔ ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
41 ablogrpo 30576 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4232, 41ax-mp 5 . . . . . 6 + ∈ GrpOp
43 ax-hfvadd 31029 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
4443fdmi 6748 . . . . . 6 dom + = ( ℋ × ℋ)
4542, 44grporn 30550 . . . . 5 ℋ = ran +
4645isphg 30846 . . . 4 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4740, 46bitrid 283 . . 3 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4833, 34, 38, 47mp3an 1460 . 2 (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))))
492, 31, 48mpbir2an 711 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cop 4637   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  1c1 11154   + caddc 11156   · cmul 11158  -cneg 11491  2c2 12319  cexp 14099  GrpOpcgr 30518  AbelOpcablo 30573  NrmCVeccnv 30613  CPreHilOLDccphlo 30841  chba 30948   + cva 30949   · csm 30950  normcno 30952   cmv 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ablo 30574  df-vc 30588  df-nv 30621  df-ph 30842  df-hnorm 30997  df-hvsub 31000
This theorem is referenced by:  bcsiHIL  31209  hhhl  31233  pjhthlem2  31421
  Copyright terms: Public domain W3C validator