HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhph Structured version   Visualization version   GIF version

Theorem hhph 28961
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhnv.1 𝑈 = ⟨⟨ + , · ⟩, norm
Assertion
Ref Expression
hhph 𝑈 ∈ CPreHilOLD

Proof of Theorem hhph
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
21hhnv 28948 . 2 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3 normpar 28938 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
4 hvsubval 28799 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) = (𝑥 + (-1 · 𝑦)))
54fveq2d 6649 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) = (norm‘(𝑥 + (-1 · 𝑦))))
65oveq1d 7150 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) = ((norm‘(𝑥 + (-1 · 𝑦)))↑2))
76oveq2d 7151 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)))
8 hvaddcl 28795 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 + 𝑦) ∈ ℋ)
9 normcl 28908 . . . . . . . . 9 ((𝑥 + 𝑦) ∈ ℋ → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
108, 9syl 17 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℝ)
1110recnd 10658 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ∈ ℂ)
1211sqcld 13504 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 + 𝑦))↑2) ∈ ℂ)
13 hvsubcl 28800 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (𝑥 𝑦) ∈ ℋ)
14 normcl 28908 . . . . . . . . 9 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℝ)
1514recnd 10658 . . . . . . . 8 ((𝑥 𝑦) ∈ ℋ → (norm‘(𝑥 𝑦)) ∈ ℂ)
1613, 15syl 17 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 𝑦)) ∈ ℂ)
1716sqcld 13504 . . . . . 6 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((norm‘(𝑥 𝑦))↑2) ∈ ℂ)
1812, 17addcomd 10831 . . . . 5 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 𝑦))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
197, 18eqtr3d 2835 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (((norm‘(𝑥 𝑦))↑2) + ((norm‘(𝑥 + 𝑦))↑2)))
20 normcl 28908 . . . . . . 7 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℝ)
2120recnd 10658 . . . . . 6 (𝑥 ∈ ℋ → (norm𝑥) ∈ ℂ)
2221sqcld 13504 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥)↑2) ∈ ℂ)
23 normcl 28908 . . . . . . 7 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℝ)
2423recnd 10658 . . . . . 6 (𝑦 ∈ ℋ → (norm𝑦) ∈ ℂ)
2524sqcld 13504 . . . . 5 (𝑦 ∈ ℋ → ((norm𝑦)↑2) ∈ ℂ)
26 2cn 11700 . . . . . 6 2 ∈ ℂ
27 adddi 10615 . . . . . 6 ((2 ∈ ℂ ∧ ((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2826, 27mp3an1 1445 . . . . 5 ((((norm𝑥)↑2) ∈ ℂ ∧ ((norm𝑦)↑2) ∈ ℂ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
2922, 25, 28syl2an 598 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))) = ((2 · ((norm𝑥)↑2)) + (2 · ((norm𝑦)↑2))))
303, 19, 293eqtr4d 2843 . . 3 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))
3130rgen2 3168 . 2 𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))
32 hilablo 28943 . . . 4 + ∈ AbelOp
3332elexi 3460 . . 3 + ∈ V
34 hvmulex 28794 . . 3 · ∈ V
35 normf 28906 . . . 4 norm: ℋ⟶ℝ
36 ax-hilex 28782 . . . 4 ℋ ∈ V
37 fex 6966 . . . 4 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
3835, 36, 37mp2an 691 . . 3 norm ∈ V
39 hhnv.1 . . . . 5 𝑈 = ⟨⟨ + , · ⟩, norm
4039eleq1i 2880 . . . 4 (𝑈 ∈ CPreHilOLD ↔ ⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD)
41 ablogrpo 28330 . . . . . . 7 ( + ∈ AbelOp → + ∈ GrpOp)
4232, 41ax-mp 5 . . . . . 6 + ∈ GrpOp
43 ax-hfvadd 28783 . . . . . . 7 + :( ℋ × ℋ)⟶ ℋ
4443fdmi 6498 . . . . . 6 dom + = ( ℋ × ℋ)
4542, 44grporn 28304 . . . . 5 ℋ = ran +
4645isphg 28600 . . . 4 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (⟨⟨ + , · ⟩, norm⟩ ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4740, 46syl5bb 286 . . 3 (( + ∈ V ∧ · ∈ V ∧ norm ∈ V) → (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2))))))
4833, 34, 38, 47mp3an 1458 . 2 (𝑈 ∈ CPreHilOLD ↔ (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (((norm‘(𝑥 + 𝑦))↑2) + ((norm‘(𝑥 + (-1 · 𝑦)))↑2)) = (2 · (((norm𝑥)↑2) + ((norm𝑦)↑2)))))
492, 31, 48mpbir2an 710 1 𝑈 ∈ CPreHilOLD
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cop 4531   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   · cmul 10531  -cneg 10860  2c2 11680  cexp 13425  GrpOpcgr 28272  AbelOpcablo 28327  NrmCVeccnv 28367  CPreHilOLDccphlo 28595  chba 28702   + cva 28703   · csm 28704  normcno 28706   cmv 28708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hilex 28782  ax-hfvadd 28783  ax-hvcom 28784  ax-hvass 28785  ax-hv0cl 28786  ax-hvaddid 28787  ax-hfvmul 28788  ax-hvmulid 28789  ax-hvmulass 28790  ax-hvdistr1 28791  ax-hvdistr2 28792  ax-hvmul0 28793  ax-hfi 28862  ax-his1 28865  ax-his2 28866  ax-his3 28867  ax-his4 28868
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ablo 28328  df-vc 28342  df-nv 28375  df-ph 28596  df-hnorm 28751  df-hvsub 28754
This theorem is referenced by:  bcsiHIL  28963  hhhl  28987  pjhthlem2  29175
  Copyright terms: Public domain W3C validator