MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar Structured version   Visualization version   GIF version

Theorem phpar 30726
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phpar.1 𝑋 = (BaseSet‘𝑈)
phpar.2 𝐺 = ( +𝑣𝑈)
phpar.4 𝑆 = ( ·𝑠OLD𝑈)
phpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phpar ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem phpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phpar.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
21fvexi 6854 . . . . 5 𝐺 ∈ V
3 phpar.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
43fvexi 6854 . . . . 5 𝑆 ∈ V
5 phpar.6 . . . . . 6 𝑁 = (normCV𝑈)
65fvexi 6854 . . . . 5 𝑁 ∈ V
72, 4, 63pm3.2i 1340 . . . 4 (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)
81, 3, 5phop 30720 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
98eleq1d 2813 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD))
109ibi 267 . . . 4 (𝑈 ∈ CPreHilOLD → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD)
11 phpar.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
1211, 1bafval 30506 . . . . . 6 𝑋 = ran 𝐺
1312isphg 30719 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
1413simplbda 499 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
157, 10, 14sylancr 587 . . 3 (𝑈 ∈ CPreHilOLD → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
16153ad2ant1 1133 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
17 fvoveq1 7392 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
1817oveq1d 7384 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2))
19 fvoveq1 7392 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝑦))))
2019oveq1d 7384 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2))
2118, 20oveq12d 7387 . . . . 5 (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)))
22 fveq2 6840 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
2322oveq1d 7384 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁𝑥)↑2) = ((𝑁𝐴)↑2))
2423oveq1d 7384 . . . . . 6 (𝑥 = 𝐴 → (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))
2524oveq2d 7385 . . . . 5 (𝑥 = 𝐴 → (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))))
2621, 25eqeq12d 2745 . . . 4 (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))))
27 oveq2 7377 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
2827fveq2d 6844 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
2928oveq1d 7384 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
30 oveq2 7377 . . . . . . . . 9 (𝑦 = 𝐵 → (-1𝑆𝑦) = (-1𝑆𝐵))
3130oveq2d 7385 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝐵)))
3231fveq2d 6844 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
3332oveq1d 7384 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
3429, 33oveq12d 7387 . . . . 5 (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
35 fveq2 6840 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
3635oveq1d 7384 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁𝑦)↑2) = ((𝑁𝐵)↑2))
3736oveq2d 7385 . . . . . 6 (𝑦 = 𝐵 → (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
3837oveq2d 7385 . . . . 5 (𝑦 = 𝐵 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
3934, 38eqeq12d 2745 . . . 4 (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4026, 39rspc2v 3596 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
41403adant1 1130 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4216, 41mpd 15 1 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cop 4591  cfv 6499  (class class class)co 7369  1c1 11045   + caddc 11047   · cmul 11049  -cneg 11382  2c2 12217  cexp 14002  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488   ·𝑠OLD cns 30489  normCVcnmcv 30492  CPreHilOLDccphlo 30714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502  df-ph 30715
This theorem is referenced by:  ip0i  30727  hlpar  30799
  Copyright terms: Public domain W3C validator