Step | Hyp | Ref
| Expression |
1 | | phpar.2 |
. . . . . 6
⊢ 𝐺 = ( +𝑣
‘𝑈) |
2 | 1 | fvexi 6806 |
. . . . 5
⊢ 𝐺 ∈ V |
3 | | phpar.4 |
. . . . . 6
⊢ 𝑆 = (
·𝑠OLD ‘𝑈) |
4 | 3 | fvexi 6806 |
. . . . 5
⊢ 𝑆 ∈ V |
5 | | phpar.6 |
. . . . . 6
⊢ 𝑁 =
(normCV‘𝑈) |
6 | 5 | fvexi 6806 |
. . . . 5
⊢ 𝑁 ∈ V |
7 | 2, 4, 6 | 3pm3.2i 1337 |
. . . 4
⊢ (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) |
8 | 1, 3, 5 | phop 29208 |
. . . . . 6
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 =
〈〈𝐺, 𝑆〉, 𝑁〉) |
9 | 8 | eleq1d 2818 |
. . . . 5
⊢ (𝑈 ∈ CPreHilOLD
→ (𝑈 ∈
CPreHilOLD ↔ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈
CPreHilOLD)) |
10 | 9 | ibi 266 |
. . . 4
⊢ (𝑈 ∈ CPreHilOLD
→ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈
CPreHilOLD) |
11 | | phpar.1 |
. . . . . . 7
⊢ 𝑋 = (BaseSet‘𝑈) |
12 | 11, 1 | bafval 28994 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
13 | 12 | isphg 29207 |
. . . . 5
⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) →
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔
(〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) |
14 | 13 | simplbda 499 |
. . . 4
⊢ (((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ∧
〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD) →
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))) |
15 | 7, 10, 14 | sylancr 586 |
. . 3
⊢ (𝑈 ∈ CPreHilOLD
→ ∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))) |
16 | 15 | 3ad2ant1 1131 |
. 2
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))) |
17 | | fvoveq1 7318 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦))) |
18 | 17 | oveq1d 7310 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2)) |
19 | | fvoveq1 7318 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝑦)))) |
20 | 19 | oveq1d 7310 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) |
21 | 18, 20 | oveq12d 7313 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2))) |
22 | | fveq2 6792 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑁‘𝑥) = (𝑁‘𝐴)) |
23 | 22 | oveq1d 7310 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑁‘𝑥)↑2) = ((𝑁‘𝐴)↑2)) |
24 | 23 | oveq1d 7310 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2))) |
25 | 24 | oveq2d 7311 |
. . . . 5
⊢ (𝑥 = 𝐴 → (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2)))) |
26 | 21, 25 | eqeq12d 2749 |
. . . 4
⊢ (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2))))) |
27 | | oveq2 7303 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) |
28 | 27 | fveq2d 6796 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵))) |
29 | 28 | oveq1d 7310 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2)) |
30 | | oveq2 7303 |
. . . . . . . . 9
⊢ (𝑦 = 𝐵 → (-1𝑆𝑦) = (-1𝑆𝐵)) |
31 | 30 | oveq2d 7311 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝐴𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝐵))) |
32 | 31 | fveq2d 6796 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵)))) |
33 | 32 | oveq1d 7310 |
. . . . . 6
⊢ (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) |
34 | 29, 33 | oveq12d 7313 |
. . . . 5
⊢ (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))) |
35 | | fveq2 6792 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑁‘𝑦) = (𝑁‘𝐵)) |
36 | 35 | oveq1d 7310 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → ((𝑁‘𝑦)↑2) = ((𝑁‘𝐵)↑2)) |
37 | 36 | oveq2d 7311 |
. . . . . 6
⊢ (𝑦 = 𝐵 → (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2)) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) |
38 | 37 | oveq2d 7311 |
. . . . 5
⊢ (𝑦 = 𝐵 → (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2))) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
39 | 34, 38 | eqeq12d 2749 |
. . . 4
⊢ (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))))) |
40 | 26, 39 | rspc2v 3572 |
. . 3
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))))) |
41 | 40 | 3adant1 1128 |
. 2
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))))) |
42 | 16, 41 | mpd 15 |
1
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |