MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phpar Structured version   Visualization version   GIF version

Theorem phpar 30853
Description: The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
phpar.1 𝑋 = (BaseSet‘𝑈)
phpar.2 𝐺 = ( +𝑣𝑈)
phpar.4 𝑆 = ( ·𝑠OLD𝑈)
phpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
phpar ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem phpar
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 phpar.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
21fvexi 6921 . . . . 5 𝐺 ∈ V
3 phpar.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
43fvexi 6921 . . . . 5 𝑆 ∈ V
5 phpar.6 . . . . . 6 𝑁 = (normCV𝑈)
65fvexi 6921 . . . . 5 𝑁 ∈ V
72, 4, 63pm3.2i 1338 . . . 4 (𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V)
81, 3, 5phop 30847 . . . . . 6 (𝑈 ∈ CPreHilOLD𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁⟩)
98eleq1d 2824 . . . . 5 (𝑈 ∈ CPreHilOLD → (𝑈 ∈ CPreHilOLD ↔ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD))
109ibi 267 . . . 4 (𝑈 ∈ CPreHilOLD → ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD)
11 phpar.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
1211, 1bafval 30633 . . . . . 6 𝑋 = ran 𝐺
1312isphg 30846 . . . . 5 ((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) → (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD ↔ (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ∧ ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))))
1413simplbda 499 . . . 4 (((𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V) ∧ ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ CPreHilOLD) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
157, 10, 14sylancr 587 . . 3 (𝑈 ∈ CPreHilOLD → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
16153ad2ant1 1132 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → ∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))))
17 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺𝑦)) = (𝑁‘(𝐴𝐺𝑦)))
1817oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝑦))↑2))
19 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝐴 → (𝑁‘(𝑥𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝑦))))
2019oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2))
2118, 20oveq12d 7449 . . . . 5 (𝑥 = 𝐴 → (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)))
22 fveq2 6907 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁𝑥) = (𝑁𝐴))
2322oveq1d 7446 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁𝑥)↑2) = ((𝑁𝐴)↑2))
2423oveq1d 7446 . . . . . 6 (𝑥 = 𝐴 → (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))
2524oveq2d 7447 . . . . 5 (𝑥 = 𝐴 → (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))))
2621, 25eqeq12d 2751 . . . 4 (𝑥 = 𝐴 → ((((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)))))
27 oveq2 7439 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
2827fveq2d 6911 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺𝑦)) = (𝑁‘(𝐴𝐺𝐵)))
2928oveq1d 7446 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺𝑦))↑2) = ((𝑁‘(𝐴𝐺𝐵))↑2))
30 oveq2 7439 . . . . . . . . 9 (𝑦 = 𝐵 → (-1𝑆𝑦) = (-1𝑆𝐵))
3130oveq2d 7447 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴𝐺(-1𝑆𝑦)) = (𝐴𝐺(-1𝑆𝐵)))
3231fveq2d 6911 . . . . . . 7 (𝑦 = 𝐵 → (𝑁‘(𝐴𝐺(-1𝑆𝑦))) = (𝑁‘(𝐴𝐺(-1𝑆𝐵))))
3332oveq1d 7446 . . . . . 6 (𝑦 = 𝐵 → ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2) = ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2))
3429, 33oveq12d 7449 . . . . 5 (𝑦 = 𝐵 → (((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)))
35 fveq2 6907 . . . . . . . 8 (𝑦 = 𝐵 → (𝑁𝑦) = (𝑁𝐵))
3635oveq1d 7446 . . . . . . 7 (𝑦 = 𝐵 → ((𝑁𝑦)↑2) = ((𝑁𝐵)↑2))
3736oveq2d 7447 . . . . . 6 (𝑦 = 𝐵 → (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2)) = (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))
3837oveq2d 7447 . . . . 5 (𝑦 = 𝐵 → (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
3934, 38eqeq12d 2751 . . . 4 (𝑦 = 𝐵 → ((((𝑁‘(𝐴𝐺𝑦))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝑦)↑2))) ↔ (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4026, 39rspc2v 3633 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
41403adant1 1129 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁𝑥)↑2) + ((𝑁𝑦)↑2))) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2)))))
4216, 41mpd 15 1 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cop 4637  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156   · cmul 11158  -cneg 11491  2c2 12319  cexp 14099  NrmCVeccnv 30613   +𝑣 cpv 30614  BaseSetcba 30615   ·𝑠OLD cns 30616  normCVcnmcv 30619  CPreHilOLDccphlo 30841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-1st 8013  df-2nd 8014  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-ph 30842
This theorem is referenced by:  ip0i  30854  hlpar  30926
  Copyright terms: Public domain W3C validator