MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthn Structured version   Visualization version   GIF version

Theorem iswspthn 29878
Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
iswspthn (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑊
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem iswspthn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5151 . . 3 (𝑤 = 𝑊 → (𝑓(SPaths‘𝐺)𝑤𝑓(SPaths‘𝐺)𝑊))
21exbidv 1918 . 2 (𝑤 = 𝑊 → (∃𝑓 𝑓(SPaths‘𝐺)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
3 wspthsn 29877 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
42, 3elrab2 3697 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  SPathscspths 29745   WWalksN cwwlksn 29855   WSPathsN cwwspthsn 29857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-wwlksn 29860  df-wspthsn 29862
This theorem is referenced by:  wspthnp  29879  wspthsnwspthsnon  29945
  Copyright terms: Public domain W3C validator