Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswspthn | Structured version Visualization version GIF version |
Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
Ref | Expression |
---|---|
iswspthn | ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑓(SPaths‘𝐺)𝑤 ↔ 𝑓(SPaths‘𝐺)𝑊)) | |
2 | 1 | exbidv 1925 | . 2 ⊢ (𝑤 = 𝑊 → (∃𝑓 𝑓(SPaths‘𝐺)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
3 | wspthsn 28114 | . 2 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | |
4 | 2, 3 | elrab2 3620 | 1 ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 SPathscspths 27982 WWalksN cwwlksn 28092 WSPathsN cwwspthsn 28094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-wwlksn 28097 df-wspthsn 28099 |
This theorem is referenced by: wspthnp 28116 wspthsnwspthsnon 28182 |
Copyright terms: Public domain | W3C validator |