| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iswspthn | Structured version Visualization version GIF version | ||
| Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.) |
| Ref | Expression |
|---|---|
| iswspthn | ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑓(SPaths‘𝐺)𝑤 ↔ 𝑓(SPaths‘𝐺)𝑊)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑤 = 𝑊 → (∃𝑓 𝑓(SPaths‘𝐺)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
| 3 | wspthsn 29785 | . 2 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | |
| 4 | 2, 3 | elrab2 3665 | 1 ⊢ (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 SPathscspths 29648 WWalksN cwwlksn 29763 WSPathsN cwwspthsn 29765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-wwlksn 29768 df-wspthsn 29770 |
| This theorem is referenced by: wspthnp 29787 wspthsnwspthsnon 29853 |
| Copyright terms: Public domain | W3C validator |