MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswspthn Structured version   Visualization version   GIF version

Theorem iswspthn 29882
Description: An element of the set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 11-May-2021.)
Assertion
Ref Expression
iswspthn (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Distinct variable groups:   𝑓,𝐺   𝑓,𝑊
Allowed substitution hint:   𝑁(𝑓)

Proof of Theorem iswspthn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . 3 (𝑤 = 𝑊 → (𝑓(SPaths‘𝐺)𝑤𝑓(SPaths‘𝐺)𝑊))
21exbidv 1920 . 2 (𝑤 = 𝑊 → (∃𝑓 𝑓(SPaths‘𝐺)𝑤 ↔ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
3 wspthsn 29881 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
42, 3elrab2 3711 1 (𝑊 ∈ (𝑁 WSPathsN 𝐺) ↔ (𝑊 ∈ (𝑁 WWalksN 𝐺) ∧ ∃𝑓 𝑓(SPaths‘𝐺)𝑊))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  SPathscspths 29749   WWalksN cwwlksn 29859   WSPathsN cwwspthsn 29861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-wwlksn 29864  df-wspthsn 29866
This theorem is referenced by:  wspthnp  29883  wspthsnwspthsnon  29949
  Copyright terms: Public domain W3C validator