|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > iszeroo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| isinito.b | ⊢ 𝐵 = (Base‘𝐶) | 
| isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) | 
| isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| iszeroo | ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | zerooval 18040 | . . 3 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) | 
| 5 | 4 | eleq2d 2827 | . 2 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ 𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) | 
| 6 | elin 3967 | . 2 ⊢ (𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))) | |
| 7 | 5, 6 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3950 ‘cfv 6561 Basecbs 17247 Hom chom 17308 Catccat 17707 InitOcinito 18026 TermOctermo 18027 ZeroOczeroo 18028 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-zeroo 18031 | 
| This theorem is referenced by: iszeroi 18054 zrzeroorngc 20644 | 
| Copyright terms: Public domain | W3C validator |