![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iszeroo | Structured version Visualization version GIF version |
Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
Ref | Expression |
---|---|
iszeroo | ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | zerooval 17034 | . . 3 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
5 | 4 | eleq2d 2845 | . 2 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ 𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) |
6 | elin 4019 | . 2 ⊢ (𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))) | |
7 | 5, 6 | syl6bb 279 | 1 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∩ cin 3791 ‘cfv 6135 Basecbs 16255 Hom chom 16349 Catccat 16710 InitOcinito 17023 TermOctermo 17024 ZeroOczeroo 17025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-zeroo 17028 |
This theorem is referenced by: iszeroi 17044 zrzeroorngc 43021 |
Copyright terms: Public domain | W3C validator |