| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iszeroo | Structured version Visualization version GIF version | ||
| Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
| isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| iszeroo | ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | zerooval 18008 | . . 3 ⊢ (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 5 | 4 | eleq2d 2820 | . 2 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ 𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) |
| 6 | elin 3942 | . 2 ⊢ (𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))) | |
| 7 | 5, 6 | bitrdi 287 | 1 ⊢ (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ‘cfv 6531 Basecbs 17228 Hom chom 17282 Catccat 17676 InitOcinito 17994 TermOctermo 17995 ZeroOczeroo 17996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-zeroo 17999 |
| This theorem is referenced by: iszeroi 18022 zrzeroorngc 20604 |
| Copyright terms: Public domain | W3C validator |