MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iszeroo Structured version   Visualization version   GIF version

Theorem iszeroo 17960
Description: The predicate "is a zero object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
iszeroo (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))))

Proof of Theorem iszeroo
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3zerooval 17957 . . 3 (𝜑 → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
54eleq2d 2814 . 2 (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ 𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶))))
6 elin 3930 . 2 (𝐼 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶)))
75, 6bitrdi 287 1 (𝜑 → (𝐼 ∈ (ZeroO‘𝐶) ↔ (𝐼 ∈ (InitO‘𝐶) ∧ 𝐼 ∈ (TermO‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  cfv 6511  Basecbs 17179  Hom chom 17231  Catccat 17625  InitOcinito 17943  TermOctermo 17944  ZeroOczeroo 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-zeroo 17948
This theorem is referenced by:  iszeroi  17971  zrzeroorngc  20553
  Copyright terms: Public domain W3C validator