Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istermo | Structured version Visualization version GIF version |
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
Ref | Expression |
---|---|
istermo | ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | termoval 17690 | . . 3 ⊢ (𝜑 → (TermO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)}) |
5 | 4 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)})) |
6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
7 | oveq2 7276 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑏𝐻𝑖) = (𝑏𝐻𝐼)) | |
8 | 7 | eleq2d 2825 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑏𝐻𝑖) ↔ ℎ ∈ (𝑏𝐻𝐼))) |
9 | 8 | eubidv 2587 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑏𝐻𝑖) ↔ ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
10 | 9 | ralbidv 3122 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
11 | 10 | elrab3 3626 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
13 | 5, 12 | bitrd 278 | 1 ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∃!weu 2569 ∀wral 3065 {crab 3069 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Hom chom 16954 Catccat 17354 TermOctermo 17678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-termo 17681 |
This theorem is referenced by: istermoi 17696 zrtermorngc 45511 zrtermoringc 45580 |
Copyright terms: Public domain | W3C validator |