MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istermo Structured version   Visualization version   GIF version

Theorem istermo 18064
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
istermo (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝐼,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem istermo
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3termoval 18061 . . 3 (𝜑 → (TermO‘𝐶) = {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)})
54eleq2d 2830 . 2 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)}))
6 isinito.i . . 3 (𝜑𝐼𝐵)
7 oveq2 7456 . . . . . . 7 (𝑖 = 𝐼 → (𝑏𝐻𝑖) = (𝑏𝐻𝐼))
87eleq2d 2830 . . . . . 6 (𝑖 = 𝐼 → ( ∈ (𝑏𝐻𝑖) ↔ ∈ (𝑏𝐻𝐼)))
98eubidv 2589 . . . . 5 (𝑖 = 𝐼 → (∃! ∈ (𝑏𝐻𝑖) ↔ ∃! ∈ (𝑏𝐻𝐼)))
109ralbidv 3184 . . . 4 (𝑖 = 𝐼 → (∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
1110elrab3 3709 . . 3 (𝐼𝐵 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
126, 11syl 17 . 2 (𝜑 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
135, 12bitrd 279 1 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  ∃!weu 2571  wral 3067  {crab 3443  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  TermOctermo 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-termo 18052
This theorem is referenced by:  istermoi  18067  zrtermorngc  20665  zrtermoringc  20697
  Copyright terms: Public domain W3C validator