MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istermo Structured version   Visualization version   GIF version

Theorem istermo 17993
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐡 = (Baseβ€˜πΆ)
isinito.h 𝐻 = (Hom β€˜πΆ)
isinito.c (πœ‘ β†’ 𝐢 ∈ Cat)
isinito.i (πœ‘ β†’ 𝐼 ∈ 𝐡)
Assertion
Ref Expression
istermo (πœ‘ β†’ (𝐼 ∈ (TermOβ€˜πΆ) ↔ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
Distinct variable groups:   𝐡,𝑏   𝐢,𝑏,β„Ž   𝐼,𝑏,β„Ž
Allowed substitution hints:   πœ‘(β„Ž,𝑏)   𝐡(β„Ž)   𝐻(β„Ž,𝑏)

Proof of Theorem istermo
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (πœ‘ β†’ 𝐢 ∈ Cat)
2 isinito.b . . . 4 𝐡 = (Baseβ€˜πΆ)
3 isinito.h . . . 4 𝐻 = (Hom β€˜πΆ)
41, 2, 3termoval 17990 . . 3 (πœ‘ β†’ (TermOβ€˜πΆ) = {𝑖 ∈ 𝐡 ∣ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖)})
54eleq2d 2815 . 2 (πœ‘ β†’ (𝐼 ∈ (TermOβ€˜πΆ) ↔ 𝐼 ∈ {𝑖 ∈ 𝐡 ∣ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖)}))
6 isinito.i . . 3 (πœ‘ β†’ 𝐼 ∈ 𝐡)
7 oveq2 7434 . . . . . . 7 (𝑖 = 𝐼 β†’ (𝑏𝐻𝑖) = (𝑏𝐻𝐼))
87eleq2d 2815 . . . . . 6 (𝑖 = 𝐼 β†’ (β„Ž ∈ (𝑏𝐻𝑖) ↔ β„Ž ∈ (𝑏𝐻𝐼)))
98eubidv 2575 . . . . 5 (𝑖 = 𝐼 β†’ (βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖) ↔ βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
109ralbidv 3175 . . . 4 (𝑖 = 𝐼 β†’ (βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖) ↔ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
1110elrab3 3685 . . 3 (𝐼 ∈ 𝐡 β†’ (𝐼 ∈ {𝑖 ∈ 𝐡 ∣ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖)} ↔ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
126, 11syl 17 . 2 (πœ‘ β†’ (𝐼 ∈ {𝑖 ∈ 𝐡 ∣ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝑖)} ↔ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
135, 12bitrd 278 1 (πœ‘ β†’ (𝐼 ∈ (TermOβ€˜πΆ) ↔ βˆ€π‘ ∈ 𝐡 βˆƒ!β„Ž β„Ž ∈ (𝑏𝐻𝐼)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098  βˆƒ!weu 2557  βˆ€wral 3058  {crab 3430  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  Hom chom 17251  Catccat 17651  TermOctermo 17978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-ov 7429  df-termo 17981
This theorem is referenced by:  istermoi  17996  zrtermorngc  20583  zrtermoringc  20615
  Copyright terms: Public domain W3C validator