![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istermo | Structured version Visualization version GIF version |
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | ⊢ 𝐵 = (Base‘𝐶) |
isinito.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinito.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
isinito.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
Ref | Expression |
---|---|
istermo | ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinito.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinito.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | termoval 16855 | . . 3 ⊢ (𝜑 → (TermO‘𝐶) = {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)}) |
5 | 4 | eleq2d 2836 | . 2 ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)})) |
6 | isinito.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
7 | oveq2 6804 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → (𝑏𝐻𝑖) = (𝑏𝐻𝐼)) | |
8 | 7 | eleq2d 2836 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (ℎ ∈ (𝑏𝐻𝑖) ↔ ℎ ∈ (𝑏𝐻𝐼))) |
9 | 8 | eubidv 2638 | . . . . 5 ⊢ (𝑖 = 𝐼 → (∃!ℎ ℎ ∈ (𝑏𝐻𝑖) ↔ ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
10 | 9 | ralbidv 3135 | . . . 4 ⊢ (𝑖 = 𝐼 → (∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
11 | 10 | elrab3 3516 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
12 | 6, 11 | syl 17 | . 2 ⊢ (𝜑 → (𝐼 ∈ {𝑖 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
13 | 5, 12 | bitrd 268 | 1 ⊢ (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∈ wcel 2145 ∃!weu 2618 ∀wral 3061 {crab 3065 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 Hom chom 16160 Catccat 16532 TermOctermo 16846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-termo 16849 |
This theorem is referenced by: istermoi 16861 zrtermorngc 42524 zrtermoringc 42593 |
Copyright terms: Public domain | W3C validator |