MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istermo Structured version   Visualization version   GIF version

Theorem istermo 17966
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.)
Hypotheses
Ref Expression
isinito.b 𝐵 = (Base‘𝐶)
isinito.h 𝐻 = (Hom ‘𝐶)
isinito.c (𝜑𝐶 ∈ Cat)
isinito.i (𝜑𝐼𝐵)
Assertion
Ref Expression
istermo (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝐼,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem istermo
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 isinito.c . . . 4 (𝜑𝐶 ∈ Cat)
2 isinito.b . . . 4 𝐵 = (Base‘𝐶)
3 isinito.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3termoval 17963 . . 3 (𝜑 → (TermO‘𝐶) = {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)})
54eleq2d 2815 . 2 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ 𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)}))
6 isinito.i . . 3 (𝜑𝐼𝐵)
7 oveq2 7398 . . . . . . 7 (𝑖 = 𝐼 → (𝑏𝐻𝑖) = (𝑏𝐻𝐼))
87eleq2d 2815 . . . . . 6 (𝑖 = 𝐼 → ( ∈ (𝑏𝐻𝑖) ↔ ∈ (𝑏𝐻𝐼)))
98eubidv 2580 . . . . 5 (𝑖 = 𝐼 → (∃! ∈ (𝑏𝐻𝑖) ↔ ∃! ∈ (𝑏𝐻𝐼)))
109ralbidv 3157 . . . 4 (𝑖 = 𝐼 → (∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
1110elrab3 3663 . . 3 (𝐼𝐵 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
126, 11syl 17 . 2 (𝜑 → (𝐼 ∈ {𝑖𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑖)} ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
135, 12bitrd 279 1 (𝜑 → (𝐼 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  ∃!weu 2562  wral 3045  {crab 3408  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  TermOctermo 17951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-termo 17954
This theorem is referenced by:  istermoi  17969  zrtermorngc  20559  zrtermoringc  20591  termcterm  49506  termc2  49511
  Copyright terms: Public domain W3C validator