![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istermo | Structured version Visualization version GIF version |
Description: The predicate "is a terminal object" of a category. (Contributed by AV, 3-Apr-2020.) |
Ref | Expression |
---|---|
isinito.b | β’ π΅ = (BaseβπΆ) |
isinito.h | β’ π» = (Hom βπΆ) |
isinito.c | β’ (π β πΆ β Cat) |
isinito.i | β’ (π β πΌ β π΅) |
Ref | Expression |
---|---|
istermo | β’ (π β (πΌ β (TermOβπΆ) β βπ β π΅ β!β β β (ππ»πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinito.c | . . . 4 β’ (π β πΆ β Cat) | |
2 | isinito.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
3 | isinito.h | . . . 4 β’ π» = (Hom βπΆ) | |
4 | 1, 2, 3 | termoval 17943 | . . 3 β’ (π β (TermOβπΆ) = {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)}) |
5 | 4 | eleq2d 2819 | . 2 β’ (π β (πΌ β (TermOβπΆ) β πΌ β {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)})) |
6 | isinito.i | . . 3 β’ (π β πΌ β π΅) | |
7 | oveq2 7416 | . . . . . . 7 β’ (π = πΌ β (ππ»π) = (ππ»πΌ)) | |
8 | 7 | eleq2d 2819 | . . . . . 6 β’ (π = πΌ β (β β (ππ»π) β β β (ππ»πΌ))) |
9 | 8 | eubidv 2580 | . . . . 5 β’ (π = πΌ β (β!β β β (ππ»π) β β!β β β (ππ»πΌ))) |
10 | 9 | ralbidv 3177 | . . . 4 β’ (π = πΌ β (βπ β π΅ β!β β β (ππ»π) β βπ β π΅ β!β β β (ππ»πΌ))) |
11 | 10 | elrab3 3684 | . . 3 β’ (πΌ β π΅ β (πΌ β {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)} β βπ β π΅ β!β β β (ππ»πΌ))) |
12 | 6, 11 | syl 17 | . 2 β’ (π β (πΌ β {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)} β βπ β π΅ β!β β β (ππ»πΌ))) |
13 | 5, 12 | bitrd 278 | 1 β’ (π β (πΌ β (TermOβπΆ) β βπ β π΅ β!β β β (ππ»πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 β!weu 2562 βwral 3061 {crab 3432 βcfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 Catccat 17607 TermOctermo 17931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-termo 17934 |
This theorem is referenced by: istermoi 17949 zrtermorngc 46889 zrtermoringc 46958 |
Copyright terms: Public domain | W3C validator |