![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrzeroorngc | Structured version Visualization version GIF version |
Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
zrinitorngc.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
zrinitorngc.c | ⊢ 𝐶 = (RngCat‘𝑈) |
zrinitorngc.z | ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) |
zrinitorngc.e | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
Ref | Expression |
---|---|
zrzeroorngc | ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrinitorngc.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | zrinitorngc.c | . . 3 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | zrinitorngc.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Ring ∖ NzRing)) | |
4 | zrinitorngc.e | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
5 | 1, 2, 3, 4 | zrinitorngc 43665 | . 2 ⊢ (𝜑 → 𝑍 ∈ (InitO‘𝐶)) |
6 | 1, 2, 3, 4 | zrtermorngc 43666 | . 2 ⊢ (𝜑 → 𝑍 ∈ (TermO‘𝐶)) |
7 | eqid 2773 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2773 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
9 | 2 | rngccat 43643 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
10 | 1, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
11 | 3 | eldifad 3836 | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ Ring) |
12 | ringrng 43544 | . . . . . 6 ⊢ (𝑍 ∈ Ring → 𝑍 ∈ Rng) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ Rng) |
14 | 4, 13 | elind 4054 | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑈 ∩ Rng)) |
15 | 2, 7, 1 | rngcbas 43630 | . . . 4 ⊢ (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng)) |
16 | 14, 15 | eleqtrrd 2864 | . . 3 ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐶)) |
17 | 7, 8, 10, 16 | iszeroo 17133 | . 2 ⊢ (𝜑 → (𝑍 ∈ (ZeroO‘𝐶) ↔ (𝑍 ∈ (InitO‘𝐶) ∧ 𝑍 ∈ (TermO‘𝐶)))) |
18 | 5, 6, 17 | mpbir2and 701 | 1 ⊢ (𝜑 → 𝑍 ∈ (ZeroO‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ∖ cdif 3821 ∩ cin 3823 ‘cfv 6186 Basecbs 16338 Hom chom 16431 Catccat 16806 InitOcinito 17119 TermOctermo 17120 ZeroOczeroo 17121 Ringcrg 19033 NzRingcnzr 19764 Rngcrng 43539 RngCatcrngc 43622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-fal 1521 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-pm 8208 df-ixp 8259 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-dju 9123 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-xnn0 11779 df-z 11793 df-dec 11911 df-uz 12058 df-fz 12708 df-hash 13505 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-hom 16444 df-cco 16445 df-0g 16570 df-cat 16810 df-cid 16811 df-homf 16812 df-ssc 16951 df-resc 16952 df-subc 16953 df-inito 17122 df-termo 17123 df-zeroo 17124 df-estrc 17244 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-mhm 17816 df-grp 17907 df-minusg 17908 df-ghm 18140 df-cmn 18681 df-abl 18682 df-mgp 18976 df-ur 18988 df-ring 19035 df-nzr 19765 df-mgmhm 43444 df-rng0 43540 df-rnghomo 43552 df-rngc 43624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |