![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zrzeroorngc | Structured version Visualization version GIF version |
Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
zrinitorngc.u | β’ (π β π β π) |
zrinitorngc.c | β’ πΆ = (RngCatβπ) |
zrinitorngc.z | β’ (π β π β (Ring β NzRing)) |
zrinitorngc.e | β’ (π β π β π) |
Ref | Expression |
---|---|
zrzeroorngc | β’ (π β π β (ZeroOβπΆ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrinitorngc.u | . . 3 β’ (π β π β π) | |
2 | zrinitorngc.c | . . 3 β’ πΆ = (RngCatβπ) | |
3 | zrinitorngc.z | . . 3 β’ (π β π β (Ring β NzRing)) | |
4 | zrinitorngc.e | . . 3 β’ (π β π β π) | |
5 | 1, 2, 3, 4 | zrinitorngc 46888 | . 2 β’ (π β π β (InitOβπΆ)) |
6 | 1, 2, 3, 4 | zrtermorngc 46889 | . 2 β’ (π β π β (TermOβπΆ)) |
7 | eqid 2732 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
8 | eqid 2732 | . . 3 β’ (Hom βπΆ) = (Hom βπΆ) | |
9 | 2 | rngccat 46866 | . . . 4 β’ (π β π β πΆ β Cat) |
10 | 1, 9 | syl 17 | . . 3 β’ (π β πΆ β Cat) |
11 | 3 | eldifad 3960 | . . . . . 6 β’ (π β π β Ring) |
12 | ringrng 46645 | . . . . . 6 β’ (π β Ring β π β Rng) | |
13 | 11, 12 | syl 17 | . . . . 5 β’ (π β π β Rng) |
14 | 4, 13 | elind 4194 | . . . 4 β’ (π β π β (π β© Rng)) |
15 | 2, 7, 1 | rngcbas 46853 | . . . 4 β’ (π β (BaseβπΆ) = (π β© Rng)) |
16 | 14, 15 | eleqtrrd 2836 | . . 3 β’ (π β π β (BaseβπΆ)) |
17 | 7, 8, 10, 16 | iszeroo 17947 | . 2 β’ (π β (π β (ZeroOβπΆ) β (π β (InitOβπΆ) β§ π β (TermOβπΆ)))) |
18 | 5, 6, 17 | mpbir2and 711 | 1 β’ (π β π β (ZeroOβπΆ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β cdif 3945 β© cin 3947 βcfv 6543 Basecbs 17143 Hom chom 17207 Catccat 17607 InitOcinito 17930 TermOctermo 17931 ZeroOczeroo 17932 Ringcrg 20055 NzRingcnzr 20290 Rngcrng 46638 RngCatcrngc 46845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-xnn0 12544 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-hom 17220 df-cco 17221 df-0g 17386 df-cat 17611 df-cid 17612 df-homf 17613 df-ssc 17756 df-resc 17757 df-subc 17758 df-inito 17933 df-termo 17934 df-zeroo 17935 df-estrc 18073 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-mhm 18670 df-grp 18821 df-minusg 18822 df-ghm 19089 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-nzr 20291 df-mgmhm 46539 df-rng 46639 df-rnghomo 46675 df-rngc 46847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |