Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrzeroorngc Structured version   Visualization version   GIF version

Theorem zrzeroorngc 46740
Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrinitorngc.u (𝜑𝑈𝑉)
zrinitorngc.c 𝐶 = (RngCat‘𝑈)
zrinitorngc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrinitorngc.e (𝜑𝑍𝑈)
Assertion
Ref Expression
zrzeroorngc (𝜑𝑍 ∈ (ZeroO‘𝐶))

Proof of Theorem zrzeroorngc
StepHypRef Expression
1 zrinitorngc.u . . 3 (𝜑𝑈𝑉)
2 zrinitorngc.c . . 3 𝐶 = (RngCat‘𝑈)
3 zrinitorngc.z . . 3 (𝜑𝑍 ∈ (Ring ∖ NzRing))
4 zrinitorngc.e . . 3 (𝜑𝑍𝑈)
51, 2, 3, 4zrinitorngc 46738 . 2 (𝜑𝑍 ∈ (InitO‘𝐶))
61, 2, 3, 4zrtermorngc 46739 . 2 (𝜑𝑍 ∈ (TermO‘𝐶))
7 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2733 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
92rngccat 46716 . . . 4 (𝑈𝑉𝐶 ∈ Cat)
101, 9syl 17 . . 3 (𝜑𝐶 ∈ Cat)
113eldifad 3958 . . . . . 6 (𝜑𝑍 ∈ Ring)
12 ringrng 46528 . . . . . 6 (𝑍 ∈ Ring → 𝑍 ∈ Rng)
1311, 12syl 17 . . . . 5 (𝜑𝑍 ∈ Rng)
144, 13elind 4192 . . . 4 (𝜑𝑍 ∈ (𝑈 ∩ Rng))
152, 7, 1rngcbas 46703 . . . 4 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Rng))
1614, 15eleqtrrd 2837 . . 3 (𝜑𝑍 ∈ (Base‘𝐶))
177, 8, 10, 16iszeroo 17935 . 2 (𝜑 → (𝑍 ∈ (ZeroO‘𝐶) ↔ (𝑍 ∈ (InitO‘𝐶) ∧ 𝑍 ∈ (TermO‘𝐶))))
185, 6, 17mpbir2and 712 1 (𝜑𝑍 ∈ (ZeroO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cdif 3943  cin 3945  cfv 6535  Basecbs 17131  Hom chom 17195  Catccat 17595  InitOcinito 17918  TermOctermo 17919  ZeroOczeroo 17920  Ringcrg 20038  NzRingcnzr 20269  Rngcrng 46521  RngCatcrngc 46695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-oadd 8457  df-er 8691  df-map 8810  df-pm 8811  df-ixp 8880  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-dju 9883  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-3 12263  df-4 12264  df-5 12265  df-6 12266  df-7 12267  df-8 12268  df-9 12269  df-n0 12460  df-xnn0 12532  df-z 12546  df-dec 12665  df-uz 12810  df-fz 13472  df-hash 14278  df-struct 17067  df-sets 17084  df-slot 17102  df-ndx 17114  df-base 17132  df-ress 17161  df-plusg 17197  df-hom 17208  df-cco 17209  df-0g 17374  df-cat 17599  df-cid 17600  df-homf 17601  df-ssc 17744  df-resc 17745  df-subc 17746  df-inito 17921  df-termo 17922  df-zeroo 17923  df-estrc 18061  df-mgm 18548  df-sgrp 18597  df-mnd 18613  df-mhm 18658  df-grp 18809  df-minusg 18810  df-ghm 19075  df-cmn 19634  df-abl 19635  df-mgp 19971  df-ur 19988  df-ring 20040  df-nzr 20270  df-mgmhm 46422  df-rng 46522  df-rnghomo 46557  df-rngc 46697
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator