Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd2 Structured version   Visualization version   GIF version

Theorem prdsbnd2 35075
Description: If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y 𝑌 = (𝑆Xs𝑅)
prdsbnd.b 𝐵 = (Base‘𝑌)
prdsbnd.v 𝑉 = (Base‘(𝑅𝑥))
prdsbnd.e 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
prdsbnd.d 𝐷 = (dist‘𝑌)
prdsbnd.s (𝜑𝑆𝑊)
prdsbnd.i (𝜑𝐼 ∈ Fin)
prdsbnd.r (𝜑𝑅 Fn 𝐼)
prdsbnd2.c 𝐶 = (𝐷 ↾ (𝐴 × 𝐴))
prdsbnd2.e ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
prdsbnd2.m ((𝜑𝑥𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
Assertion
Ref Expression
prdsbnd2 (𝜑 → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Bnd‘𝐴)))
Distinct variable groups:   𝑦,𝐷   𝑥,𝑦,𝑅   𝑥,𝐵,𝑦   𝑦,𝐸   𝜑,𝑥,𝑦   𝑥,𝐼,𝑦   𝑥,𝑆   𝑦,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥)   𝑆(𝑦)   𝐸(𝑥)   𝑉(𝑥)   𝑊(𝑥,𝑦)   𝑌(𝑦)

Proof of Theorem prdsbnd2
Dummy variables 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 35069 . 2 (𝐶 ∈ (TotBnd‘𝐴) → 𝐶 ∈ (Bnd‘𝐴))
2 bndmet 35061 . . . . 5 (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (Met‘𝐴))
3 0totbnd 35053 . . . . 5 (𝐴 = ∅ → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Met‘𝐴)))
42, 3syl5ibr 248 . . . 4 (𝐴 = ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))
54a1i 11 . . 3 (𝜑 → (𝐴 = ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))))
6 n0 4312 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑎 𝑎𝐴)
7 simprr 771 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝐶 ∈ (Bnd‘𝐴))
8 eqid 2823 . . . . . . . . . . . 12 (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
9 eqid 2823 . . . . . . . . . . . 12 (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
10 prdsbnd.v . . . . . . . . . . . 12 𝑉 = (Base‘(𝑅𝑥))
11 prdsbnd.e . . . . . . . . . . . 12 𝐸 = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉))
12 eqid 2823 . . . . . . . . . . . 12 (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
13 prdsbnd.s . . . . . . . . . . . 12 (𝜑𝑆𝑊)
14 prdsbnd.i . . . . . . . . . . . 12 (𝜑𝐼 ∈ Fin)
15 fvexd 6687 . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → (𝑅𝑥) ∈ V)
16 prdsbnd2.e . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
178, 9, 10, 11, 12, 13, 14, 15, 16prdsmet 22982 . . . . . . . . . . 11 (𝜑 → (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))) ∈ (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
18 prdsbnd.d . . . . . . . . . . . 12 𝐷 = (dist‘𝑌)
19 prdsbnd.y . . . . . . . . . . . . . 14 𝑌 = (𝑆Xs𝑅)
20 prdsbnd.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 Fn 𝐼)
21 dffn5 6726 . . . . . . . . . . . . . . . 16 (𝑅 Fn 𝐼𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
2220, 21sylib 220 . . . . . . . . . . . . . . 15 (𝜑𝑅 = (𝑥𝐼 ↦ (𝑅𝑥)))
2322oveq2d 7174 . . . . . . . . . . . . . 14 (𝜑 → (𝑆Xs𝑅) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2419, 23syl5eq 2870 . . . . . . . . . . . . 13 (𝜑𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
2524fveq2d 6676 . . . . . . . . . . . 12 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2618, 25syl5eq 2870 . . . . . . . . . . 11 (𝜑𝐷 = (dist‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
27 prdsbnd.b . . . . . . . . . . . . 13 𝐵 = (Base‘𝑌)
2824fveq2d 6676 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
2927, 28syl5eq 2870 . . . . . . . . . . . 12 (𝜑𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
3029fveq2d 6676 . . . . . . . . . . 11 (𝜑 → (Met‘𝐵) = (Met‘(Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))))
3117, 26, 303eltr4d 2930 . . . . . . . . . 10 (𝜑𝐷 ∈ (Met‘𝐵))
3231adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝐷 ∈ (Met‘𝐵))
33 simpr 487 . . . . . . . . . . 11 ((𝑎𝐴𝐶 ∈ (Bnd‘𝐴)) → 𝐶 ∈ (Bnd‘𝐴))
34 prdsbnd2.c . . . . . . . . . . . 12 𝐶 = (𝐷 ↾ (𝐴 × 𝐴))
3534bnd2lem 35071 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝐵) ∧ 𝐶 ∈ (Bnd‘𝐴)) → 𝐴𝐵)
3631, 33, 35syl2an 597 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝐴𝐵)
37 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝑎𝐴)
3836, 37sseldd 3970 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝑎𝐵)
3934ssbnd 35068 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝐵) ∧ 𝑎𝐵) → (𝐶 ∈ (Bnd‘𝐴) ↔ ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)))
4032, 38, 39syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → (𝐶 ∈ (Bnd‘𝐴) ↔ ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)))
417, 40mpbid 234 . . . . . . 7 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → ∃𝑟 ∈ ℝ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))
42 simprr 771 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))
43 xpss12 5572 . . . . . . . . . . 11 ((𝐴 ⊆ (𝑎(ball‘𝐷)𝑟) ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) → (𝐴 × 𝐴) ⊆ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟)))
4442, 42, 43syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝐴 × 𝐴) ⊆ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟)))
4544resabs1d 5886 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) = (𝐷 ↾ (𝐴 × 𝐴)))
4645, 34syl6eqr 2876 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) = 𝐶)
47 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝜑)
4838adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎𝐵)
49 simprl 769 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ)
5037adantr 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎𝐴)
5142, 50sseldd 3970 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑎 ∈ (𝑎(ball‘𝐷)𝑟))
5251ne0d 4303 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝑎(ball‘𝐷)𝑟) ≠ ∅)
5331ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐷 ∈ (Met‘𝐵))
54 metxmet 22946 . . . . . . . . . . . . . 14 (𝐷 ∈ (Met‘𝐵) → 𝐷 ∈ (∞Met‘𝐵))
5553, 54syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐷 ∈ (∞Met‘𝐵))
5649rexrd 10693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ*)
57 xbln0 23026 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝐵) ∧ 𝑎𝐵𝑟 ∈ ℝ*) → ((𝑎(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
5855, 48, 56, 57syl3anc 1367 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝑎(ball‘𝐷)𝑟) ≠ ∅ ↔ 0 < 𝑟))
5952, 58mpbid 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 0 < 𝑟)
6049, 59elrpd 12431 . . . . . . . . . 10 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝑟 ∈ ℝ+)
61 eqid 2823 . . . . . . . . . . . 12 (𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))) = (𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))
62 eqid 2823 . . . . . . . . . . . 12 (Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))))
63 eqid 2823 . . . . . . . . . . . 12 (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) = (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥))
64 eqid 2823 . . . . . . . . . . . 12 ((dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)))) = ((dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥))))
65 eqid 2823 . . . . . . . . . . . 12 (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))))
6613adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑆𝑊)
6714adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝐼 ∈ Fin)
68 ovex 7191 . . . . . . . . . . . . . 14 ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)) ∈ V
69 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → (𝑅𝑦) = (𝑅𝑥))
70 2fveq3 6677 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (dist‘(𝑅𝑦)) = (dist‘(𝑅𝑥)))
71 2fveq3 6677 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑥 → (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑥)))
7271, 10syl6eqr 2876 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑥 → (Base‘(𝑅𝑦)) = 𝑉)
7372sqxpeqd 5589 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦))) = (𝑉 × 𝑉))
7470, 73reseq12d 5856 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → ((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))) = ((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉)))
7574, 11syl6eqr 2876 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑥 → ((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))) = 𝐸)
7675fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦))))) = (ball‘𝐸))
77 fveq2 6672 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑎𝑦) = (𝑎𝑥))
78 eqidd 2824 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥𝑟 = 𝑟)
7976, 77, 78oveq123d 7179 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟) = ((𝑎𝑥)(ball‘𝐸)𝑟))
8069, 79oveq12d 7176 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)) = ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
8180cbvmptv 5171 . . . . . . . . . . . . . 14 (𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))) = (𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
8268, 81fnmpti 6493 . . . . . . . . . . . . 13 (𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))) Fn 𝐼
8382a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))) Fn 𝐼)
8416adantlr 713 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝐸 ∈ (Met‘𝑉))
85 metxmet 22946 . . . . . . . . . . . . . . . 16 (𝐸 ∈ (Met‘𝑉) → 𝐸 ∈ (∞Met‘𝑉))
8684, 85syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝐸 ∈ (∞Met‘𝑉))
8715ralrimiva 3184 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
8887adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → ∀𝑥𝐼 (𝑅𝑥) ∈ V)
89 simprl 769 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑎𝐵)
9029adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
9189, 90eleqtrd 2917 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑎 ∈ (Base‘(𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))))
928, 9, 66, 67, 88, 10, 91prdsbascl 16758 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → ∀𝑥𝐼 (𝑎𝑥) ∈ 𝑉)
9392r19.21bi 3210 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝑎𝑥) ∈ 𝑉)
94 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ+)
9594rpred 12434 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
96 blbnd 35067 . . . . . . . . . . . . . . 15 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑥) ∈ 𝑉𝑟 ∈ ℝ) → (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
9786, 93, 95, 96syl3anc 1367 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
98 ovex 7191 . . . . . . . . . . . . . . . 16 ((𝑎𝑥)(ball‘𝐸)𝑟) ∈ V
99 xpeq12 5582 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) ∧ 𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟)) → (𝑦 × 𝑦) = (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)))
10099anidms 569 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (𝑦 × 𝑦) = (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)))
101100reseq2d 5855 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (𝐸 ↾ (𝑦 × 𝑦)) = (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))))
102 fveq2 6672 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (TotBnd‘𝑦) = (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
103101, 102eleq12d 2909 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟))))
104 fveq2 6672 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (Bnd‘𝑦) = (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
105101, 104eleq12d 2909 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟))))
106103, 105bibi12d 348 . . . . . . . . . . . . . . . . 17 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)) ↔ ((𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))))
107106imbi2d 343 . . . . . . . . . . . . . . . 16 (𝑦 = ((𝑎𝑥)(ball‘𝐸)𝑟) → (((𝜑𝑥𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) ↔ ((𝜑𝑥𝐼) → ((𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟))))))
108 prdsbnd2.m . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦)))
10998, 107, 108vtocl 3561 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐼) → ((𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟))))
110109adantlr 713 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)) ↔ (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (Bnd‘((𝑎𝑥)(ball‘𝐸)𝑟))))
11197, 110mpbird 259 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) ∈ (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
112 eqid 2823 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))) = (𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))
11380, 112, 68fvmpt 6770 . . . . . . . . . . . . . . . . . 18 (𝑥𝐼 → ((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥) = ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
114113adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥) = ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
115114fveq2d 6676 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) = (dist‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
116 eqid 2823 . . . . . . . . . . . . . . . . . 18 ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)) = ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))
117 eqid 2823 . . . . . . . . . . . . . . . . . 18 (dist‘(𝑅𝑥)) = (dist‘(𝑅𝑥))
118116, 117ressds 16688 . . . . . . . . . . . . . . . . 17 (((𝑎𝑥)(ball‘𝐸)𝑟) ∈ V → (dist‘(𝑅𝑥)) = (dist‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
11998, 118ax-mp 5 . . . . . . . . . . . . . . . 16 (dist‘(𝑅𝑥)) = (dist‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
120115, 119syl6eqr 2876 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) = (dist‘(𝑅𝑥)))
121114fveq2d 6676 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) = (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
122 rpxr 12401 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
123122ad2antll 727 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑟 ∈ ℝ*)
124123adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ*)
125 blssm 23030 . . . . . . . . . . . . . . . . . . 19 ((𝐸 ∈ (∞Met‘𝑉) ∧ (𝑎𝑥) ∈ 𝑉𝑟 ∈ ℝ*) → ((𝑎𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉)
12686, 93, 124, 125syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝑎𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉)
127116, 10ressbas2 16557 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉 → ((𝑎𝑥)(ball‘𝐸)𝑟) = (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
128126, 127syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝑎𝑥)(ball‘𝐸)𝑟) = (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
129121, 128eqtr4d 2861 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) = ((𝑎𝑥)(ball‘𝐸)𝑟))
130129sqxpeqd 5589 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥))) = (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)))
131120, 130reseq12d 5856 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)))) = ((dist‘(𝑅𝑥)) ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))))
13211reseq1i 5851 . . . . . . . . . . . . . . 15 (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) = (((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉)) ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)))
133 xpss12 5572 . . . . . . . . . . . . . . . . 17 ((((𝑎𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉 ∧ ((𝑎𝑥)(ball‘𝐸)𝑟) ⊆ 𝑉) → (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)) ⊆ (𝑉 × 𝑉))
134126, 126, 133syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟)) ⊆ (𝑉 × 𝑉))
135134resabs1d 5886 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (((dist‘(𝑅𝑥)) ↾ (𝑉 × 𝑉)) ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) = ((dist‘(𝑅𝑥)) ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))))
136132, 135syl5eq 2870 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))) = ((dist‘(𝑅𝑥)) ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))))
137131, 136eqtr4d 2861 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)))) = (𝐸 ↾ (((𝑎𝑥)(ball‘𝐸)𝑟) × ((𝑎𝑥)(ball‘𝐸)𝑟))))
138129fveq2d 6676 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (TotBnd‘(Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥))) = (TotBnd‘((𝑎𝑥)(ball‘𝐸)𝑟)))
139111, 137, 1383eltr4d 2930 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((dist‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) ↾ ((Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)) × (Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥)))) ∈ (TotBnd‘(Base‘((𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))‘𝑥))))
14061, 62, 63, 64, 65, 66, 67, 83, 139prdstotbnd 35074 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) ∈ (TotBnd‘(Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))))))
14124adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑌 = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥))))
142 eqidd 2824 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))) = (𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))))
143 eqid 2823 . . . . . . . . . . . . 13 (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))))
14481oveq2i 7169 . . . . . . . . . . . . . 14 (𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))) = (𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
145144fveq2i 6675 . . . . . . . . . . . . 13 (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (dist‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))))
146 fvexd 6687 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → (𝑅𝑥) ∈ V)
14798a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝑎𝑥)(ball‘𝐸)𝑟) ∈ V)
148141, 142, 143, 18, 145, 66, 66, 67, 146, 147ressprdsds 22983 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (𝐷 ↾ ((Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))))))
149128ixpeq2dva 8478 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → X𝑥𝐼 ((𝑎𝑥)(ball‘𝐸)𝑟) = X𝑥𝐼 (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
15069cbvmptv 5171 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝐼 ↦ (𝑅𝑦)) = (𝑥𝐼 ↦ (𝑅𝑥))
151150oveq2i 7169 . . . . . . . . . . . . . . . . . . . . 21 (𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))) = (𝑆Xs(𝑥𝐼 ↦ (𝑅𝑥)))
15224, 151syl6eqr 2876 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌 = (𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
153152fveq2d 6676 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (dist‘𝑌) = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
15418, 153syl5eq 2870 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
155154fveq2d 6676 . . . . . . . . . . . . . . . . 17 (𝜑 → (ball‘𝐷) = (ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))))
156155oveqdr 7186 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝑎(ball‘𝐷)𝑟) = (𝑎(ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))𝑟))
157 eqid 2823 . . . . . . . . . . . . . . . . 17 (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))) = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
158 eqid 2823 . . . . . . . . . . . . . . . . 17 (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))) = (dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦))))
159152fveq2d 6676 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (Base‘𝑌) = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
16027, 159syl5eq 2870 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐵 = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
161160adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝐵 = (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
16289, 161eleqtrd 2917 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 𝑎 ∈ (Base‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))
163 rpgt0 12404 . . . . . . . . . . . . . . . . . 18 (𝑟 ∈ ℝ+ → 0 < 𝑟)
164163ad2antll 727 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → 0 < 𝑟)
165151, 157, 10, 11, 158, 66, 67, 146, 86, 162, 123, 164prdsbl 23103 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝑎(ball‘(dist‘(𝑆Xs(𝑦𝐼 ↦ (𝑅𝑦)))))𝑟) = X𝑥𝐼 ((𝑎𝑥)(ball‘𝐸)𝑟))
166156, 165eqtrd 2858 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝑎(ball‘𝐷)𝑟) = X𝑥𝐼 ((𝑎𝑥)(ball‘𝐸)𝑟))
167 eqid 2823 . . . . . . . . . . . . . . . 16 (𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))) = (𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
16868a1i 11 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) ∧ 𝑥𝐼) → ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)) ∈ V)
169168ralrimiva 3184 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → ∀𝑥𝐼 ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)) ∈ V)
170 eqid 2823 . . . . . . . . . . . . . . . 16 (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))) = (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))
171167, 143, 66, 67, 169, 170prdsbas3 16756 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) = X𝑥𝐼 (Base‘((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))
172149, 166, 1713eqtr4rd 2869 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) = (𝑎(ball‘𝐷)𝑟))
173172sqxpeqd 5589 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → ((Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))))) = ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟)))
174173reseq2d 5855 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝐷 ↾ ((Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))) × (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟))))))) = (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))))
175148, 174eqtrd 2858 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (dist‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))))
176144fveq2i 6675 . . . . . . . . . . . . 13 (Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (Base‘(𝑆Xs(𝑥𝐼 ↦ ((𝑅𝑥) ↾s ((𝑎𝑥)(ball‘𝐸)𝑟)))))
177176, 172syl5eq 2870 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟))))) = (𝑎(ball‘𝐷)𝑟))
178177fveq2d 6676 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (TotBnd‘(Base‘(𝑆Xs(𝑦𝐼 ↦ ((𝑅𝑦) ↾s ((𝑎𝑦)(ball‘((dist‘(𝑅𝑦)) ↾ ((Base‘(𝑅𝑦)) × (Base‘(𝑅𝑦)))))𝑟)))))) = (TotBnd‘(𝑎(ball‘𝐷)𝑟)))
179140, 175, 1783eltr3d 2929 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑟 ∈ ℝ+)) → (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟)))
18047, 48, 60, 179syl12anc 834 . . . . . . . . 9 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → (𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟)))
181 totbndss 35057 . . . . . . . . 9 (((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ∈ (TotBnd‘(𝑎(ball‘𝐷)𝑟)) ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟)) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) ∈ (TotBnd‘𝐴))
182180, 42, 181syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → ((𝐷 ↾ ((𝑎(ball‘𝐷)𝑟) × (𝑎(ball‘𝐷)𝑟))) ↾ (𝐴 × 𝐴)) ∈ (TotBnd‘𝐴))
18346, 182eqeltrrd 2916 . . . . . . 7 (((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) ∧ (𝑟 ∈ ℝ ∧ 𝐴 ⊆ (𝑎(ball‘𝐷)𝑟))) → 𝐶 ∈ (TotBnd‘𝐴))
18441, 183rexlimddv 3293 . . . . . 6 ((𝜑 ∧ (𝑎𝐴𝐶 ∈ (Bnd‘𝐴))) → 𝐶 ∈ (TotBnd‘𝐴))
185184exp32 423 . . . . 5 (𝜑 → (𝑎𝐴 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))))
186185exlimdv 1934 . . . 4 (𝜑 → (∃𝑎 𝑎𝐴 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))))
1876, 186syl5bi 244 . . 3 (𝜑 → (𝐴 ≠ ∅ → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴))))
1885, 187pm2.61dne 3105 . 2 (𝜑 → (𝐶 ∈ (Bnd‘𝐴) → 𝐶 ∈ (TotBnd‘𝐴)))
1891, 188impbid2 228 1 (𝜑 → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Bnd‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148   × cxp 5555  cres 5559   Fn wfn 6352  cfv 6357  (class class class)co 7158  Xcixp 8463  Fincfn 8511  cr 10538  0cc0 10539  *cxr 10676   < clt 10677  +crp 12392  Basecbs 16485  s cress 16486  distcds 16576  Xscprds 16721  ∞Metcxmet 20532  Metcmet 20533  ballcbl 20534  TotBndctotbnd 35046  Bndcbnd 35047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-prds 16723  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-totbnd 35048  df-bnd 35059
This theorem is referenced by:  cnpwstotbnd  35077
  Copyright terms: Public domain W3C validator